Abstract
Electrocardiogram (ECG) signal for human identity recognition is a new area on biometrics research. The ECG is a vital signal of human body, unique, robustness to attack, universality and permanence, difference to others traditional biometrics technic. This study also proposes Adaptive Multilayer Generalized Learning Vector Quantization (AMGLVQ), that integrating feature extraction and classification method. The experiments shown that AMGLVQ can improve the accuracy of classification better than SVM or back-propagation NN and also able to handle some problems of heartbeat classification: imbalanced data set, inconsistency between feature extraction and classification and detecting unknown data on testing phase.
Original language | English |
---|---|
Pages (from-to) | 1891-1917 |
Number of pages | 27 |
Journal | International Journal on Smart Sensing and Intelligent Systems |
Volume | 6 |
Issue number | 5 |
DOIs | |
Publication status | Published - Dec 2013 |
Keywords
- AMGLVQ
- Back-propagation-NN
- Classification
- ECG biometrics
- Feature extraction
- SVM
- Vector quantization