Eigenspace-based fuzzy c-means for sensing trending topics in Twitter

T. Muliawati, Hendri Murfi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Citations (Scopus)

Abstract

As the information and communication technology are developed, the fulfillment of information can be obtained through social media, like Twitter. The enormous number of internet users has triggered fast and large data flow, thus making the manual analysis is difficult or even impossible. An automated methods for data analysis is needed, one of which is the topic detection and tracking. An alternative method other than latent Dirichlet allocation (LDA) is a soft clustering approach using Fuzzy C-Means (FCM). FCM meets the assumption that a document may consist of several topics. However, FCM works well in low-dimensional data but fails in high-dimensional data. Therefore, we propose an approach where FCM works on low-dimensional data by reducing the data using singular value decomposition (SVD). Our simulations show that this approach gives better accuracies in term of topic recall than LDA for sensing trending topic in Twitter about an event.

Original languageEnglish
Title of host publicationInternational Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016
Subtitle of host publicationProceedings of the 2nd International Symposium on Current Progress in Mathematics and Sciences 2016
EditorsKiki Ariyanti Sugeng, Djoko Triyono, Terry Mart
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735415362
DOIs
Publication statusPublished - 10 Jul 2017
Event2nd International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016 - Depok, Jawa Barat, Indonesia
Duration: 1 Nov 20162 Nov 2016

Publication series

NameAIP Conference Proceedings
Volume1862
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference2nd International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016
Country/TerritoryIndonesia
CityDepok, Jawa Barat
Period1/11/162/11/16

Keywords

  • clustering
  • fuzzy c-means
  • singular value decomposition
  • topic detection
  • topic modeling

Fingerprint

Dive into the research topics of 'Eigenspace-based fuzzy c-means for sensing trending topics in Twitter'. Together they form a unique fingerprint.

Cite this