@inproceedings{81911b39206143f5b95d3cb8d01a0d32,
title = "Effects of pore CaCO3 form agencies on dissolution mechanisms of amoxicillin drugs encapsulated in hydrogels full-IPN chitosan N-vinyl caprolactam",
abstract = "The administration of amoxicillin trihydrate in Helicobacter pylori infection is not effective enough because the conventional preparations used have a short retention time in the stomach. To overcome this problem, amoxicillin trihydrate was encapsulated into the floating drug delivery matrix-matrix. In this study, the full-ipn acetaldehyde crosslinked hydrogel (N-vinyl caprolactam) was synthesized with a 10% CaCO3 pore forming agent and then encapsulated on amoxicillin trihydrate and studied the mechanism of drug dissolution with its kinetic kinetics approach. The K-PNVCL Hydrogel produces optimal properties which are then loaded with amoxicillin trihydrate in situ and post loading. In this research, we have got the percentage of swelling, floating time, the efficiency of in situ and post loading 873%; 3.15 minutes; 99.8% and 99.4%. The dissolution test was performed on amoxicillin trihydrate which had been encapsulated K-PNVCL hydrogel in vitro at pH 1.2 resulting in 94.5% for in situ loading and 98.5% for post loading. Results of the kinetics of drug release for post loading and in situ loading methods tend to follow the Higuchi model kinetics. The drug release mechanism occurs by Fickian diffusion. Proof of drug release mechanism from K-PNVCL hydrogel matrix is further done by Scanning Electron Microscope (SEM) instrument.",
keywords = "dissolution test, floating drug delivery system, full-IPN, poly (N-vinylcaprolactam), release mechanism",
author = "Emil Budianto and Maghfira Fauzia",
note = "Publisher Copyright: {\textcopyright} 2018 Author(s).; 3rd International Conference on Materials and Metallurgical Engineering and Technology: Advancing Innovation in Materials Science, Technology and Applications for Sustainable Future, ICOMMET 2017 ; Conference date: 30-10-2017 Through 31-10-2017",
year = "2018",
month = apr,
day = "3",
doi = "10.1063/1.5030238",
language = "English",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
editor = "Hidayat, {Mas Irfan P.}",
booktitle = "Proceedings of the 3rd International Conference on Materials and Metallurgical Engineering and Technology, ICOMMET 2017",
address = "United States",
}