Effect of reduced graphene oxide addition on the performance of zinc oxide nanorod based dye-sensitized solar cell

M. S. Wahab, A. F. Madsuha, E. S. Rosa, A. H. Yuwono

Research output: Contribution to journalConference articlepeer-review

1 Citation (Scopus)

Abstract

As one of third generation photovoltaic device, dye-sensitized solar cell (DSSC) plays important part in search for new and renewable energy resources. As part of this device, dye has a very critical function due to its responsibility in absorbing the photon energy from the sunlight. The more light can be absorbed, the higher the value of photon to electricity conversion efficiency can be obtained. For increasing the absorption capacity of the dye, this work investigated the effect of reduced graphene oxide (rGO) addition into the dye solution with rGO to dye weight % ratio of 1:100; 3:100; and 5:100 respectively. On the basis of investigation, it was found that the ratio of 3:100 produced a higher power conversion efficiency (PCE) of about 0,02% as compared to the reference cells which displayed a value of 0,005%. It confirms that introducing rGO into the dye can enhance the DSSC performance, though several fabrication handling procedures still need to be improved as well.

Original languageEnglish
Article number066017
JournalJournal of Physics: Conference Series
Volume1402
Issue number6
DOIs
Publication statusPublished - 16 Dec 2019
Event4th Annual Applied Science and Engineering Conference, AASEC 2019 - Bali, Indonesia
Duration: 24 Apr 2019 → …

Fingerprint

Dive into the research topics of 'Effect of reduced graphene oxide addition on the performance of zinc oxide nanorod based dye-sensitized solar cell'. Together they form a unique fingerprint.

Cite this