TY - JOUR
T1 - Effect of Mould Coating on Skin Formation and Nodule Characteristics of Thin Wall Ductile Iron Casting
AU - Dhaneswara, Donanta
AU - Suharno, Bambang
AU - Aprilio, A.
AU - Ariobimo, R. D.S.
AU - Sofyan, Nofrijon Bin Imam
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2017/5/20
Y1 - 2017/5/20
N2 - Thin wall ductile iron (TWDI) has the potential alternative for lightweight aluminium use in automotive parts. The main problem in TWDI, however, is the formation of skin during the casting, which may reduce its mechanical properties. This casting skin is formed by the decomposition of nodular graphite at the mould interface during the casting process. One of the ways to work around this problem is by using mould coating to control the cooling process. In this work, three variables of mould coatings were used, i.e. graphite, MgO, and MgO/graphite double layers. The results showed that the average casting skin thickness in double layer coating was the lowest (30.41 μm), 57% lower than that of in MgO (71.46 μm) and 60% lower than that of graphite (74.44 μm). The reduction of casting skin thickness increased the mechanical properties of TWDI (346 MPa), 69% higher than that of MgO (223 MPa) and 26% higher than that of graphite (297 MPa). The same is true for ductility (2.7%), which was higher than that of MgO (1.43%) and that of graphite (1.43%).
AB - Thin wall ductile iron (TWDI) has the potential alternative for lightweight aluminium use in automotive parts. The main problem in TWDI, however, is the formation of skin during the casting, which may reduce its mechanical properties. This casting skin is formed by the decomposition of nodular graphite at the mould interface during the casting process. One of the ways to work around this problem is by using mould coating to control the cooling process. In this work, three variables of mould coatings were used, i.e. graphite, MgO, and MgO/graphite double layers. The results showed that the average casting skin thickness in double layer coating was the lowest (30.41 μm), 57% lower than that of in MgO (71.46 μm) and 60% lower than that of graphite (74.44 μm). The reduction of casting skin thickness increased the mechanical properties of TWDI (346 MPa), 69% higher than that of MgO (223 MPa) and 26% higher than that of graphite (297 MPa). The same is true for ductility (2.7%), which was higher than that of MgO (1.43%) and that of graphite (1.43%).
UR - http://www.scopus.com/inward/record.url?scp=85019679572&partnerID=8YFLogxK
U2 - 10.1088/1757-899X/196/1/012045
DO - 10.1088/1757-899X/196/1/012045
M3 - Conference article
AN - SCOPUS:85019679572
SN - 1757-8981
VL - 196
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 1
M1 - 012045
T2 - 3rd International Conference on Functional Materials Science 2016, ICFMS 2016
Y2 - 19 October 2016 through 20 October 2016
ER -