Effect of mixing geopolymer and peat on bearing capacity in Ogan Komering Ilir (OKI) by California bearing ratio (CBR) test

Danang S. Raharja, Sigit Pranowo Hadiwardoyo, Wiwik Rahayu, Nasuhi Zain

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Geopolymer is binder material that consists of solid material and the activator solution. Geopolymer material has successfully replaced cement in the manufacture of concrete with aluminosilicate bonding system. Geopolymer concrete has properties similar to cement concrete with high compressive strength, low shrinkage value, relatively low creep value, as well as acid-resistant. Based on these, the addition of polymers in peat soils is expected to improve the bearing capacity of peat soils. A study on the influence of geopolymer addition in peat soils was done by comparing before and after the peat soil was mixed with geopolymer using CBR (California Bearing Ratio) test in unsoaked and soaked conditions. 10% mixture content of the peat dry was used, weighted with a variety of curing time 4 hours, 5 days, and 10 days. There were two methods of mixing: first, peat was mixed with fly ash geopolymer activators and mixed solution (waterglass, NaOH, water), and second, peat was mixed with fly ash and mixed geopolymer (waterglass, NaOH, water, fly ash). Changes were observed in specific gravity, dry density, acidity (pH), and the microscopic structure with Scanning Electron Microscope (SEM). Curing time did not significantly affect the CBR value. It even shows a tendency to decline with longer curing time. The first type mixture obtained CBR value of: 5.4% for 4 hours curing, 4.6% for 5 days curing and 3.6% for 10 days curing. The second type mixture obtained CBR value of: 6.1% for 4 hours curing, 5.2% for 5 days curing and 5.2% for 10 days curing. Furthermore, the specific gravity value, dry density, pH near neutral and swelling percentage increased. From both variants, the second type mixture shows better results than the first type mixture. The results of SEM (Scanning Electron Microscopy) show the structure of the peat which became denser with the fly ash particles filling the peat microporous. Also, the reaction of fly ash with geopolymer is indicated by the solid agglomerates that are larger than normal fly ash particle size.

Original languageEnglish
Title of host publicationGreen Process, Material, and Energy
Subtitle of host publicationA Sustainable Solution for Climate Change - Proceedings of the 3rd International Conference on Engineering, Technology, and Industrial Application, ICETIA 2016
EditorsHari Prasetyo, Wisnu Setiawan, Fajar Suryawan, Munajat Tri Nugroho, Tri Widayatno, Nurul Hidayati, Eko Setiawan
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735415294
DOIs
Publication statusPublished - 15 Jun 2017
Event3rd International Conference on Engineering, Technology, and Industrial Application - Green Process, Material, and Energy: A Sustainable Solution for Climate Change, ICETIA 2016 - Surakarta, Indonesia
Duration: 7 Dec 20168 Dec 2016

Publication series

NameAIP Conference Proceedings
Volume1855
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference3rd International Conference on Engineering, Technology, and Industrial Application - Green Process, Material, and Energy: A Sustainable Solution for Climate Change, ICETIA 2016
CountryIndonesia
CitySurakarta
Period7/12/168/12/16

Fingerprint Dive into the research topics of 'Effect of mixing geopolymer and peat on bearing capacity in Ogan Komering Ilir (OKI) by California bearing ratio (CBR) test'. Together they form a unique fingerprint.

Cite this