TY - JOUR
T1 - Effect of Freeze-Thaw Cycles Method to Transfersome Characteristics for Growth Protein Encapsulation
AU - Khayrani, Apriliana Cahya
AU - Fahmi, Muhammad
AU - Nurhayati, Retno Wahyu
AU - Manas, Nor Hasmaliana Abdul
AU - Suhaeri, Muhammad
N1 - Publisher Copyright:
© 2024, Faculty of Engineering. All rights reserved.
PY - 2024
Y1 - 2024
N2 - Transfersome, a lipid-based nanovesicle, can be a suitable tool to improve the delivery of valuable growth factors. Through transfersome technology, growth factors and active compounds can be transferred transdermally without the need for invasive delivery procedures. In this study, we evaluated the impact of freeze-thaw cycles on transfersome characteristics, particularly particle size, polydispersity, and encapsulation efficiency. Transfersome particles were prepared from dipalmitoylphosphatidylcholine (DPPC) and Tween 80 with a 97.5:2.5 w/w% using thin film hydration at a temperature of 45° - 50°C. Then, the transfersome suspension was subjected to repeated freeze-thaw for 1 minute of freezing and 3 minutes of thawing. The protein release from all transfersome samples were evaluated using Bradford assay, while the particle size and polydispersity were determined with a dynamic scattering analyzer. It was found that freeze-thaw increased encapsulation efficiency, particle size, and polydispersity of transfersomes up to 81.63±0.00%, 180.70±0.87 nm, and 0.369±0.02, respectively, from those without freeze-thaw steps (73.35±0.03%, 144.93±0.21 nm and 0.202±0.02). Moreover, freeze-thawed transfersomes exhibited a release of up to 52.80% of loaded protein within 78 hours, in contrast to 37.48% in non-freeze-thawed transfersomes. This study shows that an additional freeze-thaw step is a promising method to improve the properties of transfersome particles, especially encapsulation efficiency and sustained protein release.
AB - Transfersome, a lipid-based nanovesicle, can be a suitable tool to improve the delivery of valuable growth factors. Through transfersome technology, growth factors and active compounds can be transferred transdermally without the need for invasive delivery procedures. In this study, we evaluated the impact of freeze-thaw cycles on transfersome characteristics, particularly particle size, polydispersity, and encapsulation efficiency. Transfersome particles were prepared from dipalmitoylphosphatidylcholine (DPPC) and Tween 80 with a 97.5:2.5 w/w% using thin film hydration at a temperature of 45° - 50°C. Then, the transfersome suspension was subjected to repeated freeze-thaw for 1 minute of freezing and 3 minutes of thawing. The protein release from all transfersome samples were evaluated using Bradford assay, while the particle size and polydispersity were determined with a dynamic scattering analyzer. It was found that freeze-thaw increased encapsulation efficiency, particle size, and polydispersity of transfersomes up to 81.63±0.00%, 180.70±0.87 nm, and 0.369±0.02, respectively, from those without freeze-thaw steps (73.35±0.03%, 144.93±0.21 nm and 0.202±0.02). Moreover, freeze-thawed transfersomes exhibited a release of up to 52.80% of loaded protein within 78 hours, in contrast to 37.48% in non-freeze-thawed transfersomes. This study shows that an additional freeze-thaw step is a promising method to improve the properties of transfersome particles, especially encapsulation efficiency and sustained protein release.
KW - Dipalmitoylphosphatidylcholine
KW - Encapsulation
KW - Freeze-thaw
KW - Growth protein
KW - Transfersome
UR - http://www.scopus.com/inward/record.url?scp=85185337386&partnerID=8YFLogxK
U2 - 10.14716/ijtech.v15i2.6670
DO - 10.14716/ijtech.v15i2.6670
M3 - Article
AN - SCOPUS:85185337386
SN - 2086-9614
VL - 15
SP - 267
EP - 278
JO - International Journal of Technology
JF - International Journal of Technology
IS - 2
ER -