Effect of expanded organoclay by stearic acid to curing, mechanical and swelling properties of natural rubber nanocomposites

A. Ramadhan, M. Irfan Fathurrohman, A. F. Falaah, N. Setyawan, Bambang Soegijono

Research output: Contribution to journalConference articlepeer-review

Abstract

The interlayer basal spacing of organoclay (OC) could be increased with stearic acid (SA) added, thus OC changed into expanded organoclay by SA (OCSA). The effect of various loadings of OCSA on the curing, mechanical and swelling properties of natural rubber (NR) nanocomposites were studied. The natural rubber/expanded organoclay (NR/OCSA) nanocomposites were prepared by melt intercalation using a laboratory open mill. The curing characteristics of NR compounds were determined using a Moving Die Rheometer (MDR). The X-ray Diffraction (XRD), Attenuated Total Reflectance Infrared (ATR-IR) Spectroscopy and Field Emission Scanning Electron Microscopy (FESEM) were used to study the dispersion of OCSA in the NR matrix. The mechanical properties of NR/OCSA nanocomposites such as tensile strength, elongation at break and hardness were determined using ISO standard and swelling of NR/OCSA nanocomposites in toluene were determined using ISO 1817. The results showed that the SA intercalated into the gallery of OC and reacted with the hydroxyl groups in OC. It was indicated with the shifting of the negative peak 1,700 to 1,723 cm-1 in the ATR-IR spectrum and increase the d-spacing of OC. The adding of various loadings of OCSA into NR could increase the torque and accelerate the curing of nanocomposites and it also could increase the mechanical and swelling properties of nanocomposites. The change in modulus at 100% elongation significantly increased with increasing the OCSA load until maximum loading at 10 phr. This trend was same with the hardness and modulus at 300% elongation. Meanwhile, the improvement of tensile strength and elongation at break was higher at 4 phr OCSA compared with the other loading. The increase of mechanical and swelling properties of NR/OCSA nanocomposites was due to intercalation/exfoliation of OCSA in NR matrix. It was revealed by appearing of the out-of-plane Si-O-(Al) stretch with peak value 1080 cm-1 in the ATR-IR spectrum and the peaks of OCSA in the XRD pattern was disappeared until the loading of OCSA 8 phr and the thickness of morphology of OCSA below 100 nm.

Original languageEnglish
Article number012030
JournalIOP Conference Series: Materials Science and Engineering
Volume223
Issue number1
DOIs
Publication statusPublished - 5 Aug 2017
EventInternational Conference and Exhibition on Innovation in Polymer Science and Technology 2016, IPST 2016 - Medan, North Sumatera, Indonesia
Duration: 7 Nov 201610 Nov 2016

Fingerprint Dive into the research topics of 'Effect of expanded organoclay by stearic acid to curing, mechanical and swelling properties of natural rubber nanocomposites'. Together they form a unique fingerprint.

Cite this