TY - GEN
T1 - Effect of drug loading method on drug dissolution mechanism of amoxicillin trihydrate encapsulated in chitosan-poly(N-vinylpyrrolidone) full-ipn hydrogel as a floating drug delivery system matrix
AU - Baihaqi, Ahmad Ichsan
AU - Rahayu, Dyah Utami Cahyaning
AU - Budianto, Emil
N1 - Publisher Copyright:
© 2019 Trans Tech Publications Ltd, Switzerland.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Amoxicillin trihydrate suits to be encapsulated into a modified matrix to increase its bioavailability. In this study, the effect of drug loading methods on drug dissolution mechanism from chitosan-poly(N-vinylpyrrolidone) hydrogel with CaCO3 as the effervescent agent has been studied. It was found that the encapsulation efficiency of in situ and post loading methods were 93% and 75%, respectively. The dissolution values were 94% and 98%, respectively for in situ and post loading. The dissolution test data was incorporated into zero-order, first-order, Higuchi and Korsmeyer-Peppas models to evaluate the kinetic and the mechanism of the drug dissolutions. The in situ loading method fits well to first-order model (R2 = 0.9772), while the post loading method fits well to Higuchi model (R2 = 0.9880). Based on Korsmeyer-Peppas model, the dissolution mechanism of in situ loading was Fickian diffusion (n = 0.4024), while post loading was a combination of diffusion and erosion (n = 0.5532). From the SEM images, it showed that the surface and cross-sectional of the post loading method hydrogel formed pores and pore channels, both before and after the dissolution test. Meanwhile, on the surface and the cross-sectional of in situ loading method hydrogel had pores and pore channels only after dissolution test.
AB - Amoxicillin trihydrate suits to be encapsulated into a modified matrix to increase its bioavailability. In this study, the effect of drug loading methods on drug dissolution mechanism from chitosan-poly(N-vinylpyrrolidone) hydrogel with CaCO3 as the effervescent agent has been studied. It was found that the encapsulation efficiency of in situ and post loading methods were 93% and 75%, respectively. The dissolution values were 94% and 98%, respectively for in situ and post loading. The dissolution test data was incorporated into zero-order, first-order, Higuchi and Korsmeyer-Peppas models to evaluate the kinetic and the mechanism of the drug dissolutions. The in situ loading method fits well to first-order model (R2 = 0.9772), while the post loading method fits well to Higuchi model (R2 = 0.9880). Based on Korsmeyer-Peppas model, the dissolution mechanism of in situ loading was Fickian diffusion (n = 0.4024), while post loading was a combination of diffusion and erosion (n = 0.5532). From the SEM images, it showed that the surface and cross-sectional of the post loading method hydrogel formed pores and pore channels, both before and after the dissolution test. Meanwhile, on the surface and the cross-sectional of in situ loading method hydrogel had pores and pore channels only after dissolution test.
KW - Amoxicillin Trihydrate
KW - Chitosan
KW - Dissolution Mechanism
KW - Floating Drug Delivery System
KW - Hydrogel
UR - http://www.scopus.com/inward/record.url?scp=85071921113&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/MSF.964.251
DO - 10.4028/www.scientific.net/MSF.964.251
M3 - Conference contribution
AN - SCOPUS:85071921113
SN - 9783035714340
T3 - Materials Science Forum
SP - 251
EP - 256
BT - Seminar on Materials Science and Technology
A2 - Noerochim, Lukman
PB - Trans Tech Publications Ltd
T2 - 4th International Seminar on Science and Technology, ISST 2018
Y2 - 9 August 2018 through 9 August 2018
ER -