TY - GEN
T1 - Effect of casting design to microstructure and mechanical properties of 3 mm TWDI plate
AU - Soedarsono, Johny Wahyuadi
AU - Suharno, Bambang
AU - Sulamet-Ariobimo, Rianti Dewi
PY - 2012
Y1 - 2012
N2 - The problem occurs in producing thin wall ductile iron (TWDI) is high cooling rate due to its thickness. Cooling rate must be strictly maintained to prevent carbide formation. There are many ways to control cooling rate. Casting design is one of these, especially gating system design. This parameter is often chosen because of its independence. Major changes in equipment and raw material used in the foundry are not needed when a casting design is chosen to deal with cooling rate. This paper discusses the effect of gating system design on microstructure and mechanical properties of 3 mm TWDI plate. A casting design based on gating system design is made to produce 1, 2, 3, 4, and 5 mm TWDI plates. There are three designs coded as T1, T2, and T3. These three designs were also used in making 1 mm TWDI plates of which the result has been published. The plate with thickness of 3 mm will be used for automotive component like the crankshaft made by Martinez. The moulds used were furan sand. Beside the experiment, casting design simulation with Z-Cast was also conducted to see the behaviour of solidification in 3 mm TWDI plate. Simulation result showed every design has its own solidification behaviour for 3 mm TWDI plate, especially for T2. Experiment result showed that all the designs have microstructure consisting of nodule graphite in ferrite matrix, no trace of carbide and skin effect are formed. Skin effect length is various for all designs. Nodularity exceeded 75% and nodule count exceeded 900 nodules/mm 2. Brinell hardness number for all design is beyond standard given by JIG G5502. As for UTS and elongation none of the designs exceed the minimal standard. Experiment results confirmed simulation result. Compared to the previous result nodularity and nodule count decrease and curve trends for every result are not the same.
AB - The problem occurs in producing thin wall ductile iron (TWDI) is high cooling rate due to its thickness. Cooling rate must be strictly maintained to prevent carbide formation. There are many ways to control cooling rate. Casting design is one of these, especially gating system design. This parameter is often chosen because of its independence. Major changes in equipment and raw material used in the foundry are not needed when a casting design is chosen to deal with cooling rate. This paper discusses the effect of gating system design on microstructure and mechanical properties of 3 mm TWDI plate. A casting design based on gating system design is made to produce 1, 2, 3, 4, and 5 mm TWDI plates. There are three designs coded as T1, T2, and T3. These three designs were also used in making 1 mm TWDI plates of which the result has been published. The plate with thickness of 3 mm will be used for automotive component like the crankshaft made by Martinez. The moulds used were furan sand. Beside the experiment, casting design simulation with Z-Cast was also conducted to see the behaviour of solidification in 3 mm TWDI plate. Simulation result showed every design has its own solidification behaviour for 3 mm TWDI plate, especially for T2. Experiment result showed that all the designs have microstructure consisting of nodule graphite in ferrite matrix, no trace of carbide and skin effect are formed. Skin effect length is various for all designs. Nodularity exceeded 75% and nodule count exceeded 900 nodules/mm 2. Brinell hardness number for all design is beyond standard given by JIG G5502. As for UTS and elongation none of the designs exceed the minimal standard. Experiment results confirmed simulation result. Compared to the previous result nodularity and nodule count decrease and curve trends for every result are not the same.
KW - 3 mm plate
KW - Casting design
KW - Middle level
KW - TWDI
UR - http://www.scopus.com/inward/record.url?scp=84255175937&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/AMR.415-417.831
DO - 10.4028/www.scientific.net/AMR.415-417.831
M3 - Conference contribution
AN - SCOPUS:84255175937
SN - 9783037853252
T3 - Advanced Materials Research
SP - 831
EP - 837
BT - Advanced Materials
T2 - 2nd International Conference on Advances in Materials and Manufacturing Processes, ICAMMP 2011
Y2 - 16 December 2011 through 18 December 2011
ER -