Effect of biofilm and selective mixed culture on microbial fuel cell for the treatment of tempeh industrial wastewater

Rita Arbianti, Tania Surya Utami, Vifki Leondo, Elisabeth, Syafira Andyah Putri, Heri Hermansyah

Research output: Contribution to journalConference articlepeer-review

3 Citations (Scopus)

Abstract

Microbial Fuel Cell (MFC) provides a new alternative in the treatment of organic waste. MFC produces 50-90% less sludge to be disposed than other methods. MFC technology can utilize existing microorganisms in the waste as a catalyst to generate electricity and simultaneously also serves as a wastewater treatment unit itself. Tempeh wastewater is one of the abundant industrial wastewater which can be processed using MFC. Research using the selective mixed culture is very likely to do due to the good result on COD removals by adding mixed culture. Microorganisms in tempeh wastewater consist of bacteria gram positive and gram negative. This study focused on the aspects of waste treatment which is determined by decreased levels of COD and BOD. Variations in this study are the formation time of biofilm and the addition of selective gram. MFC operated for 50 hours. For a variation of biofilm formation, experiments were performed after incubation by replacing incubation substrates used in the formation of biofilms. Biofilm formation time in this study was 3 days, 5 days, 7 days and 14 days. Gram positive and gram negative bacteria were used in selective mixed culture experiments. Selective mixed culture added to the reactor by 1 mL and 5 mL. Selection of gram-positive or gram-negative bacteria carried by growing mixed culture on selective media. COD and BOD levels were measured in the wastewater before and after the experiment conducted in each variation. Biofilm formation optimum time is 7 days which decrease COD and BOD levels by 18.2% and 35.9%. The addition of gram negative bacteria decreases COD and BOD levels by 29.32% and 51.32%. Further research is needed in order to get a better result on decreasing levels of COD and BOD.

Original languageEnglish
Article number012073
JournalIOP Conference Series: Materials Science and Engineering
Volume316
Issue number1
DOIs
Publication statusPublished - 28 Mar 2018
Event15th International Conference on Quality in Research, QiR 2017 - Nusa Dua, Bali, Indonesia
Duration: 24 Jul 201727 Jul 2017

Keywords

  • BOD
  • Biofilm
  • COD
  • Microbial fuel cell
  • Tempeh wastewater

Fingerprint

Dive into the research topics of 'Effect of biofilm and selective mixed culture on microbial fuel cell for the treatment of tempeh industrial wastewater'. Together they form a unique fingerprint.

Cite this