@inproceedings{a2d63ebdfa764e588be88b852427d64d,
title = "Ease fabrication of PCR modular chip for portable DNA detection kit",
abstract = "Engineering a lab-on-a-chip (LoC) to perform the DNA polymerase chain reaction (PCR) for malaria detection is the ultimate goal of this study. This paper investigates the ability to fabricate an LoC kit using conventional method to achieve the lowest production cost by using existing fabrication process. It has been known that majority of LoC was made of polydimethylsiloxane (PDMS) which in this study was realized through a contact mold process. CNC milling process was utilized to create channel features in the range of 150-250 μm on the mold. Characterization on the milling process was done to understand the shrinkage/contraction between mold to product, roughness and also angle of contact of PDMS surface. Ultimately, this paper also includes analysis on flow measurement and heat distribution of an assembled LoC PCR kit. The results show that the achieved dimension of microchannel is 227 μm wide with a roughness of 0.01 μm. The flow measurement indicates a deviation with simulation in the range of 10%. A heat distribution through the kit is achieved following the three temperature zones as desired.",
keywords = "PDMS, lab-on-a-chip, malaria detection, microchannel, polymerase chain reaction",
author = "Yudan Whulanza and Rifky Aditya and Reyhan Arvialido and Utomo, {Muhammad S.} and Bachtiar, {Boy M.}",
note = "Publisher Copyright: {\textcopyright} 2017 Author(s).; 1st International Symposium of Biomedical Engineering: Biomedical Engineering's Recent Progress in Biomaterials, Drugs Development, and Medical Devices, ISBE 2016 ; Conference date: 31-05-2016 Through 01-06-2016",
year = "2017",
month = feb,
day = "21",
doi = "10.1063/1.4976791",
language = "English",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
editor = "Yudan Whulanza and Sugeng Supriadi and Muhamad Sahlan and Basari",
booktitle = "Biomedical Engineering's Recent Progress in Biomaterials, Drugs Development, and Medical Devices",
address = "United States",
}