Drilling Optimization of Tight Sands and Shale Gas Reservoir in Jambi Sub-Basin Based on Pore Pressure Estimation Using Drilling Efficiency Mechanical Specific Energy (DEMSE) and Bowers Methods

Benny Abraham Bungasalu, M. Syamsu Rosid, Don S. Basuki

Research output: Contribution to journalConference articlepeer-review

Abstract

The subsurface pressure analysis is used to detect the overpressure and problems in the well that will be drilled based on exploration well data. Various problems were found while drilling operations carried out on A and B wells, namely, Kick and Pipe sticking which cause a high Non-Productive Time (NPT). This research is conducted to identify the mechanism of overpressure formation in Tight Sand Gas and Shale Gas in the Jambi Sub-Basin. Furthermore, to predict pore pressure using the Drilling Efficiency and Mechanical Specific Energy (DEMSE) and Bowers method. The final result will be a 3D pore pressure cube in the area based on quantitative analysis of post-stack seismic inversion. The results of the pore pressure analysis from the wells and the 3D pore pressure model indicate that top of overpressure occurs in the Gumai Formation, then it is decreasing gradually approaching the hydrostatic pressure on the Basement. The mechanisms of overpressure are caused by under compaction, fluid expansion (kerogen maturation). The Gumai Formation and Talang Akar Formation are shale rocks so the type of mud weight that is well used is oil based mud (OBM).

Original languageEnglish
Article number15001
JournalE3S Web of Conferences
Volume125
DOIs
Publication statusPublished - 28 Oct 2019
Event4th International Conference on Energy, Environment, Epidemiology and Information System, ICENIS 2019 - Semarang, Indonesia
Duration: 7 Aug 20198 Aug 2019

Keywords

  • Bowers method
  • DEMSE method
  • Overpressure

Fingerprint

Dive into the research topics of 'Drilling Optimization of Tight Sands and Shale Gas Reservoir in Jambi Sub-Basin Based on Pore Pressure Estimation Using Drilling Efficiency Mechanical Specific Energy (DEMSE) and Bowers Methods'. Together they form a unique fingerprint.

Cite this