TY - JOUR
T1 - Digital Pattern Recognition for the Identification of Various Hypospadias Parameters via an Artificial Neural Network
T2 - Protocol for the Development and Validation of a System and Mobile App
AU - Wahyudi, Irfan
AU - Utomo, Chandra Prasetyo
AU - Djauzi, Samsuridjal
AU - Fathurahman, Muhamad
AU - Situmorang, Gerhard Reinaldi
AU - Rodjani, Arry
AU - Yonathan, Kevin
AU - Santoso, Budi
N1 - Funding Information:
The authors would like to thank their families and medical staff for the support given in conducting the study. This research is funded by the Indonesian State Ministry for Research and Technology under a Hibah Penelitian Dasar Kompetitif Nasional (National Competitive Basic Research grant) scheme (grant NKB-912/UN2.RST/HKP.05.00/2022).
Publisher Copyright:
©Irfan Wahyudi, Chandra Prasetyo Utomo, Samsuridjal Djauzi, Muhamad Fathurahman, Gerhard Reinaldi Situmorang, Arry Rodjani, Kevin Yonathan, Budi Santoso.
PY - 2022/11
Y1 - 2022/11
N2 - Background: Hypospadias remains the most prevalent congenital abnormality in boys worldwide. However, the limited infrastructure and number of pediatric urologists capable of diagnosing and managing the condition hinder the management of hypospadias in Indonesia. The use of artificial intelligence and image recognition is thought to be beneficial in improving the management of hypospadias cases in Indonesia. Objective: We aim to develop and validate a digital pattern recognition system and a mobile app based on an artificial neural network to determine various parameters of hypospadias. Methods: Hypospadias and normal penis images from an age-matched database will be used to train the artificial neural network. Images of 3 aspects of the penis (ventral, dorsal, and lateral aspects, which include the glans, shaft, and scrotum) will be taken from each participant. The images will be labeled with the following hypospadias parameters: hypospadias status, meatal location, meatal shape, the quality of the urethral plate, glans diameter, and glans shape. The data will be uploaded to train the image recognition model. Intrarater and interrater analyses will be performed, using the test images provided to the algorithm. Results: Our study is at the protocol development stage. A preliminary study regarding the system’s development and feasibility will start in December 2022. The results of our study are expected to be available by the end of 2023. Conclusions: A digital pattern recognition system using an artificial neural network will be developed and designed to improve the diagnosis and management of patients with hypospadias, especially those residing in regions with limited infrastructure and health personnel. International Registered Report Identifier (IRRID): PRR1-10.2196/42853
AB - Background: Hypospadias remains the most prevalent congenital abnormality in boys worldwide. However, the limited infrastructure and number of pediatric urologists capable of diagnosing and managing the condition hinder the management of hypospadias in Indonesia. The use of artificial intelligence and image recognition is thought to be beneficial in improving the management of hypospadias cases in Indonesia. Objective: We aim to develop and validate a digital pattern recognition system and a mobile app based on an artificial neural network to determine various parameters of hypospadias. Methods: Hypospadias and normal penis images from an age-matched database will be used to train the artificial neural network. Images of 3 aspects of the penis (ventral, dorsal, and lateral aspects, which include the glans, shaft, and scrotum) will be taken from each participant. The images will be labeled with the following hypospadias parameters: hypospadias status, meatal location, meatal shape, the quality of the urethral plate, glans diameter, and glans shape. The data will be uploaded to train the image recognition model. Intrarater and interrater analyses will be performed, using the test images provided to the algorithm. Results: Our study is at the protocol development stage. A preliminary study regarding the system’s development and feasibility will start in December 2022. The results of our study are expected to be available by the end of 2023. Conclusions: A digital pattern recognition system using an artificial neural network will be developed and designed to improve the diagnosis and management of patients with hypospadias, especially those residing in regions with limited infrastructure and health personnel. International Registered Report Identifier (IRRID): PRR1-10.2196/42853
KW - artificial intelligence
KW - digital recognition
KW - hypospadias
KW - machine learning
UR - http://www.scopus.com/inward/record.url?scp=85144785512&partnerID=8YFLogxK
U2 - 10.2196/42853
DO - 10.2196/42853
M3 - Article
AN - SCOPUS:85144785512
SN - 1929-0748
VL - 11
JO - JMIR Research Protocols
JF - JMIR Research Protocols
IS - 11
M1 - e42853
ER -