TY - JOUR
T1 - Different heat treatment of CeO2 nanoparticle composited with ZnO to enhance photocatalytic performance
AU - Taufik, A.
AU - Shabrany, H.
AU - Saleh, Rosari
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2017/5/2
Y1 - 2017/5/2
N2 - In this study, ZnO/CeO2 nanocomposites were prepared with four variations of the molar ratio of ZnO to CeO2 nanoparticles. Both ZnO and CeO2 nanoparticles were synthesized using the sol-gel method at low temperature, followed by different heat treatments for CeO2 nanoparticles. Thermal phase transformation studies of the CeO2 nanoparticles were observed at annealing temperatures of 400-800°C. The complete crystalline structure of CeO2 nanoparticles was obtained at an annealing temperature of 800°C. The structural and optical properties of all samples were observed using several characterization techniques, such as X-ray diffraction (XRD), ultraviolet-visible diffuse reflectance spectroscopy, and Brunauer, Emmett, and Teller (BET) surface area analysis. The structural characterization results revealed that the prepared CeO2 nanoparticles were quite crystalline, with a cubic structure. The photocatalytic activities of all samples were tested under visible irradiation. The obtained results showed that ZnO/CeO2 nanocomposites with a molar ratio 1:0.3 exhibited the highest photocatalytic activity. Further understanding of the role of primary active species underlying the reaction mechanism involved in photocatalytic activity were carried out in controlled experiments by adding several scavengers. The detailed mechanism and its correlation with the properties of ZnO/CeO2 nanocomposites were discuss.
AB - In this study, ZnO/CeO2 nanocomposites were prepared with four variations of the molar ratio of ZnO to CeO2 nanoparticles. Both ZnO and CeO2 nanoparticles were synthesized using the sol-gel method at low temperature, followed by different heat treatments for CeO2 nanoparticles. Thermal phase transformation studies of the CeO2 nanoparticles were observed at annealing temperatures of 400-800°C. The complete crystalline structure of CeO2 nanoparticles was obtained at an annealing temperature of 800°C. The structural and optical properties of all samples were observed using several characterization techniques, such as X-ray diffraction (XRD), ultraviolet-visible diffuse reflectance spectroscopy, and Brunauer, Emmett, and Teller (BET) surface area analysis. The structural characterization results revealed that the prepared CeO2 nanoparticles were quite crystalline, with a cubic structure. The photocatalytic activities of all samples were tested under visible irradiation. The obtained results showed that ZnO/CeO2 nanocomposites with a molar ratio 1:0.3 exhibited the highest photocatalytic activity. Further understanding of the role of primary active species underlying the reaction mechanism involved in photocatalytic activity were carried out in controlled experiments by adding several scavengers. The detailed mechanism and its correlation with the properties of ZnO/CeO2 nanocomposites were discuss.
KW - CeO
KW - ZnO
KW - methylene blue
KW - photocatalytic
UR - http://www.scopus.com/inward/record.url?scp=85019744579&partnerID=8YFLogxK
U2 - 10.1088/1757-899X/188/1/012038
DO - 10.1088/1757-899X/188/1/012038
M3 - Conference article
AN - SCOPUS:85019744579
SN - 1757-8981
VL - 188
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 1
M1 - 012038
T2 - International Symposium on Current Progress in Functional Materials 2016, ISCPFM 2016
Y2 - 26 July 2016 through 27 July 2016
ER -