TY - GEN
T1 - Die soldering behavior of h13 and cr-mo-v tool steel on die casting process on nitriding-shot pinning die surface treatment
AU - Ariati, Myrna
AU - Aldila, Rizki
N1 - Publisher Copyright:
© 2020 Trans Tech Publications Ltd, Switzerland.
PY - 2020
Y1 - 2020
N2 - Die soldering is a sticking phenomenon between molten aluminum with the surface of steel die in the die casting process, which results in damage to the cast products and l the steel die. In this research, two die materials, H13 and Cr-Mo-V steels were used. Those dies were then treated by two process variables, shot pinning and nitriding-shot pinning. To simulate the die casting process, the samples were dipped into molten Aluminum-Si alloy, ADC12 at 680℃ for 30, 300, and 1800 seconds. Characterizations were focused on the surface of the steel, which includes microstructure observation by a microscope, microhardness profile, compound identification, and weight loss measurements. It was found that H13 steel and Cr-Mo-V steel treated by nitriding–shot pinning have higher hardness up to 100% and thinner intermetallic layer. On H13 steel, the compact layer thickness decreased from 19 μm to 17 μm and from 96 μm to 80 μm for the broken layer. Similar trends occurred for Cr-Mo-V steel, where the thickness of the compact layer and broken layer decreased from 38 μm to 19 μm and 119 μm to 45 μm respectively. These results indicate that H13 and Cr-Mo-V steels that were treated by nitriding–shot pinning have a better resistance to die soldering.
AB - Die soldering is a sticking phenomenon between molten aluminum with the surface of steel die in the die casting process, which results in damage to the cast products and l the steel die. In this research, two die materials, H13 and Cr-Mo-V steels were used. Those dies were then treated by two process variables, shot pinning and nitriding-shot pinning. To simulate the die casting process, the samples were dipped into molten Aluminum-Si alloy, ADC12 at 680℃ for 30, 300, and 1800 seconds. Characterizations were focused on the surface of the steel, which includes microstructure observation by a microscope, microhardness profile, compound identification, and weight loss measurements. It was found that H13 steel and Cr-Mo-V steel treated by nitriding–shot pinning have higher hardness up to 100% and thinner intermetallic layer. On H13 steel, the compact layer thickness decreased from 19 μm to 17 μm and from 96 μm to 80 μm for the broken layer. Similar trends occurred for Cr-Mo-V steel, where the thickness of the compact layer and broken layer decreased from 38 μm to 19 μm and 119 μm to 45 μm respectively. These results indicate that H13 and Cr-Mo-V steels that were treated by nitriding–shot pinning have a better resistance to die soldering.
KW - Die casting
KW - Die soldering
KW - Intermetallic layer
KW - Nitriding
KW - Shot pinning
UR - http://www.scopus.com/inward/record.url?scp=85088291071&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/MSF.1000.381
DO - 10.4028/www.scientific.net/MSF.1000.381
M3 - Conference contribution
AN - SCOPUS:85088291071
SN - 9783035715996
T3 - Materials Science Forum
SP - 381
EP - 390
BT - Advanced Materials Research QiR 16
A2 - Zulfia, Anne
A2 - Putra, Wahyuaji Narottama
PB - Trans Tech Publications Ltd
T2 - 16th International Conference on Quality in Research, QiR 2019
Y2 - 22 July 2019 through 24 July 2019
ER -