Development of tight-binding based GW algorithm and its computational implementation for graphene

Muhammad Aziz Majidi, Muhammad Avicenna Naradipa, Wileam Yonatan Phan, Ahmad Syahroni, Andrivo Rusydi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Graphene has been a hot subject of research in the last decade as it holds a promise for various applications. One interesting issue is whether or not graphene should be classified into a strongly or weakly correlated system, as the optical properties may change upon several factors, such as the substrate, voltage bias, adatoms, etc. As the Coulomb repulsive interactions among electrons can generate the correlation effects that may modify the single-particle spectra (density of states) and the two-particle spectra (optical conductivity) of graphene, we aim to explore such interactions in this study. The understanding of such correlation effects is important because eventually they play an important role in inducing the effective attractive interactions between electrons and holes that bind them into excitons. We do this study theoretically by developing a GW method implemented on the basis of the tight-binding (TB) model Hamiltonian. Unlike the well-known GW method developed within density functional theory (DFT) framework, our TB-based GW implementation may serve as an alternative technique suitable for systems which Hamiltonian is to be constructed through a tight-binding based or similar models. This study includes theoretical formulation of the Green's function G, the renormalized interaction function W from random phase approximation (RPA), and the corresponding self energy derived from Feynman diagrams, as well as the development of the algorithm to compute those quantities. As an evaluation of the method, we perform calculations of the density of states and the optical conductivity of graphene, and analyze the results.

Original languageEnglish
Title of host publicationInternational Symposium on Current Progress in Mathematics and Sciences 2015, ISCPMS 2015
Subtitle of host publicationProceedings of the 1st International Symposium on Current Progress in Mathematics and Sciences
EditorsTerry Mart, Djoko Triyono
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735413764
DOIs
Publication statusPublished - 19 Apr 2016
Event1st International Symposium on Current Progress in Mathematics and Sciences, ISCPMS 2015 - Depok, Indonesia
Duration: 3 Nov 20154 Nov 2015

Publication series

NameAIP Conference Proceedings
Volume1729
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference1st International Symposium on Current Progress in Mathematics and Sciences, ISCPMS 2015
CountryIndonesia
CityDepok
Period3/11/154/11/15

Fingerprint Dive into the research topics of 'Development of tight-binding based GW algorithm and its computational implementation for graphene'. Together they form a unique fingerprint.

Cite this