TY - JOUR
T1 - Determination of compressive strength of 3D polymeric lattice structure as template in powder metallurgy
AU - Utomo, M. S.
AU - Whulanza, Y.
AU - Lestari, F. P.
AU - Erryani, A.
AU - Kartika, I.
AU - Alief, N. A.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2019/7/3
Y1 - 2019/7/3
N2 - Powder metallurgy has been developed to fabricate metal foams from various materials including magnesium. One particular challenge on powder metallurgy is fabrication of highly-ordered and interconnected porous products. Pores interconnectivity is important in application of porous magnesium alloy for biodegradable orthopedic implants. Meanwhile, 3D polymeric printing technology offers capability to build precise and rapid lattice wireframe products in a simple and low-cost manner. Here, we design and validate the capability of 3D polymeric lattice as template in powder metallurgy for fabrication of magnesium-based biodegradable implants. Lattice structures were made of ABS, PLA, and PVA filaments. Lattice structures were cubical-shaped with uniform dimension and variations in pore size are included in the study. Both computational and experimental tests are performed to determine the compressive strength of the lattice structures. Uniaxial stress with uniform magnitude is applied to test the lattice structures. The resulting stress, strain, and deformation of the 3D polymeric lattice are observed. Variations in materials and pore size affect the stress, strain and deformation of the 3D polymeric lattice. Parameters can be further optimized to meet the requirement of the design and fabrication process in consideration of the tolerable stress, strain and deformation.
AB - Powder metallurgy has been developed to fabricate metal foams from various materials including magnesium. One particular challenge on powder metallurgy is fabrication of highly-ordered and interconnected porous products. Pores interconnectivity is important in application of porous magnesium alloy for biodegradable orthopedic implants. Meanwhile, 3D polymeric printing technology offers capability to build precise and rapid lattice wireframe products in a simple and low-cost manner. Here, we design and validate the capability of 3D polymeric lattice as template in powder metallurgy for fabrication of magnesium-based biodegradable implants. Lattice structures were made of ABS, PLA, and PVA filaments. Lattice structures were cubical-shaped with uniform dimension and variations in pore size are included in the study. Both computational and experimental tests are performed to determine the compressive strength of the lattice structures. Uniaxial stress with uniform magnitude is applied to test the lattice structures. The resulting stress, strain, and deformation of the 3D polymeric lattice are observed. Variations in materials and pore size affect the stress, strain and deformation of the 3D polymeric lattice. Parameters can be further optimized to meet the requirement of the design and fabrication process in consideration of the tolerable stress, strain and deformation.
UR - http://www.scopus.com/inward/record.url?scp=85069000748&partnerID=8YFLogxK
U2 - 10.1088/1757-899X/541/1/012042
DO - 10.1088/1757-899X/541/1/012042
M3 - Conference article
AN - SCOPUS:85069000748
SN - 1757-8981
VL - 541
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 1
M1 - 012042
T2 - 2nd International Seminar on Metallurgy and Materials, ISMM 2018
Y2 - 25 September 2018 through 26 September 2018
ER -