@inproceedings{b42bd3061de84ce9bdd28bab52f307e6,
title = "Design of fiber optic based respiratory sensor for newborn incubator application",
abstract = "This paper reports the design of respiratory sensor using fiber optic for newborn incubator application. The sensor works based on light intensity losses difference obtained due to thorax movement during respiration. The output of the sensor launched to support electronic circuits to be processed in Arduino Uno microcontroler such that the real-time respiratory rate (breath per minute) can be presented on LCD. Experiment results using thorax expansion of newborn simulator show that the system is able to measure respiratory rate from 10 up to 130 breaths per minute with 0.595% error and 0.2% hysteresis error.",
keywords = "fiber optic, macro bending, microcontroller, newborn incubator, respiratory sensor",
author = "Arika Dhia and Kresna Devara and Tomy Abuzairi and Poespawati, {Nji Raden} and Purnamaningsih, {Retno Wigajatri}",
note = "Publisher Copyright: {\textcopyright} 2018 Author(s). Published by AIP Publishing.; 2nd Biomedical Engineering's Recent Progress in Biomaterials, Drugs Development, and Medical Devices, ISBE 2017 ; Conference date: 25-07-2017 Through 26-07-2017",
year = "2018",
month = feb,
day = "13",
doi = "10.1063/1.5023988",
language = "English",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
editor = "Radon Dhelika and Yudan Whulanza and Ghiska Ramahdita and Wulan, {Praswasti P.D.K.}",
booktitle = "2nd Biomedical Engineering�s Recent Progress in Biomaterials, Drugs Development, and Medical Devices",
}