Design of fiber optic based respiratory sensor for newborn incubator application

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Citations (Scopus)

Abstract

This paper reports the design of respiratory sensor using fiber optic for newborn incubator application. The sensor works based on light intensity losses difference obtained due to thorax movement during respiration. The output of the sensor launched to support electronic circuits to be processed in Arduino Uno microcontroler such that the real-time respiratory rate (breath per minute) can be presented on LCD. Experiment results using thorax expansion of newborn simulator show that the system is able to measure respiratory rate from 10 up to 130 breaths per minute with 0.595% error and 0.2% hysteresis error.

Original languageEnglish
Title of host publication2nd Biomedical Engineering�s Recent Progress in Biomaterials, Drugs Development, and Medical Devices
Subtitle of host publicationProceedings of the International Symposium of Biomedical Engineering, ISBE 2017
EditorsRadon Dhelika, Yudan Whulanza, Ghiska Ramahdita, Praswasti P.D.K. Wulan
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735416253
DOIs
Publication statusPublished - 13 Feb 2018
Event2nd Biomedical Engineering's Recent Progress in Biomaterials, Drugs Development, and Medical Devices, ISBE 2017 - Bali, Indonesia
Duration: 25 Jul 201726 Jul 2017

Publication series

NameAIP Conference Proceedings
Volume1933
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference2nd Biomedical Engineering's Recent Progress in Biomaterials, Drugs Development, and Medical Devices, ISBE 2017
Country/TerritoryIndonesia
CityBali
Period25/07/1726/07/17

Keywords

  • fiber optic
  • macro bending
  • microcontroller
  • newborn incubator
  • respiratory sensor

Fingerprint

Dive into the research topics of 'Design of fiber optic based respiratory sensor for newborn incubator application'. Together they form a unique fingerprint.

Cite this