TY - JOUR
T1 - Design of candida Antarctica Lipase B thermostability improvement by introducting extra disulfide bond into the enzyme
AU - Friend, Usman Sumo
AU - Randy, Ahmad
AU - Parikesit, Arli Aditya
PY - 2014
Y1 - 2014
N2 - Candida Antarctica Lipase B (CALB) is extensively studied in enzymatic production of biodiesel, pharmaceutical products, detergents and other chemicals. One drawback of using CALB is its relatively low optimum temperature at 313 K (40°C). The objective of this research is to design CALB mutant with improved thermostability by introducing extra disulfide bond. Molecular dynamic simulation was conducted to get better insight into the process of thermal denaturation or unfolding in CALB. Thermal denaturation of CALB was accelerated by conducting simulation at high temperature. Molecular dynamic simulation of CALB was performed with GROMACS software package at 300-700 K. Prediction of possible mutation was done using "Disulfide by Design™" software. Selection of mutated residues was based on flexibility analysis of CALB. From those analyses, three mutants were designed, which are Mutant-1 (73LeuCys/151AlaCys), Mutant-2 (155TrpCys/294GluCys) and Mutant-3 (43ThrCys/67SerCys). Parameters that were used to compare the thermostability of mutant with wild type enzyme were Root Mean Square Deviations (RMSD), Solvent Accessible Surface Area (SASA), Radius of gyration (Rg) and secondary structure. Molecular dynamic simulation conducted on those three mutants showed that Mutant-1 has better thermostability compared to wild type CALB. We proposed the order of mutant thermostability improvement as follows: Mutant-1, Mutant-2 and Mutant-3, with Mutant-1 having better potential thermostability improvement and Mutant-3, the least stable.
AB - Candida Antarctica Lipase B (CALB) is extensively studied in enzymatic production of biodiesel, pharmaceutical products, detergents and other chemicals. One drawback of using CALB is its relatively low optimum temperature at 313 K (40°C). The objective of this research is to design CALB mutant with improved thermostability by introducing extra disulfide bond. Molecular dynamic simulation was conducted to get better insight into the process of thermal denaturation or unfolding in CALB. Thermal denaturation of CALB was accelerated by conducting simulation at high temperature. Molecular dynamic simulation of CALB was performed with GROMACS software package at 300-700 K. Prediction of possible mutation was done using "Disulfide by Design™" software. Selection of mutated residues was based on flexibility analysis of CALB. From those analyses, three mutants were designed, which are Mutant-1 (73LeuCys/151AlaCys), Mutant-2 (155TrpCys/294GluCys) and Mutant-3 (43ThrCys/67SerCys). Parameters that were used to compare the thermostability of mutant with wild type enzyme were Root Mean Square Deviations (RMSD), Solvent Accessible Surface Area (SASA), Radius of gyration (Rg) and secondary structure. Molecular dynamic simulation conducted on those three mutants showed that Mutant-1 has better thermostability compared to wild type CALB. We proposed the order of mutant thermostability improvement as follows: Mutant-1, Mutant-2 and Mutant-3, with Mutant-1 having better potential thermostability improvement and Mutant-3, the least stable.
KW - Candida antarctica Lipase B
KW - Disulfide Bond
KW - Molecular Dynamic Simulation
KW - Mutation
KW - Thermostability
UR - http://www.scopus.com/inward/record.url?scp=84899447629&partnerID=8YFLogxK
U2 - 10.3844/ojbsci.2014.108.118
DO - 10.3844/ojbsci.2014.108.118
M3 - Article
AN - SCOPUS:84899447629
SN - 1608-4217
VL - 14
SP - 108
EP - 118
JO - OnLine Journal of Biological Sciences
JF - OnLine Journal of Biological Sciences
IS - 2
ER -