TY - JOUR
T1 - Derivation and validation of novel integrated inpatient mortality prediction score for COVID-19 (IMPACT) using clinical, laboratory, and AI—processed radiological parameter upon admission
T2 - a multicentre study
AU - Tenda, Eric Daniel
AU - Henrina, Joshua
AU - Setiadharma, Andry
AU - Aristy, Dahliana Jessica
AU - Romadhon, Pradana Zaky
AU - Thahadian, Harik Firman
AU - Mahdi, Bagus Aulia
AU - Adhikara, Imam Manggalya
AU - Marfiani, Erika
AU - Suryantoro, Satriyo Dwi
AU - Yunus, Reyhan Eddy
AU - Yusuf, Prasandhya Astagiri
N1 - Publisher Copyright:
© 2024, The Author(s).
PY - 2024/12
Y1 - 2024/12
N2 - Limited studies explore the use of AI for COVID-19 prognostication. This study investigates the relationship between AI-aided radiographic parameters, clinical and laboratory data, and mortality in hospitalized COVID-19 patients. We conducted a multicentre retrospective study. The derivation and validation cohort comprised of 512 and 137 confirmed COVID-19 patients, respectively. Variable selection for constructing an in-hospital mortality scoring model was performed using the least absolute shrinkage and selection operator, followed by logistic regression. The accuracy of the scoring model was assessed using the area under the receiver operating characteristic curve. The final model included eight variables: anosmia (OR: 0.280; 95%CI 0.095–0.826), dyspnoea (OR: 1.684; 95%CI 1.049–2.705), loss of consciousness (OR: 4.593; 95%CI 1.702–12.396), mean arterial pressure (OR: 0.928; 95%CI 0.900–0.957), peripheral oxygen saturation (OR: 0.981; 95%CI 0.967–0.996), neutrophil % (OR: 1.034; 95%CI 1.013–1.055), serum urea (OR: 1.018; 95%CI 1.010–1.026), affected lung area score (OR: 1.026; 95%CI 1.014–1.038). The Integrated Inpatient Mortality Prediction Score for COVID-19 (IMPACT) demonstrated a predictive value of 0.815 (95% CI 0.774–0.856) in the derivation cohort. Internal validation resulted in an AUROC of 0.770 (95% CI 0.661–0.879). Our study provides valuable evidence of the real-world application of AI in clinical settings. However, it is imperative to conduct prospective validation of our findings, preferably utilizing a control group and extending the application to broader populations.
AB - Limited studies explore the use of AI for COVID-19 prognostication. This study investigates the relationship between AI-aided radiographic parameters, clinical and laboratory data, and mortality in hospitalized COVID-19 patients. We conducted a multicentre retrospective study. The derivation and validation cohort comprised of 512 and 137 confirmed COVID-19 patients, respectively. Variable selection for constructing an in-hospital mortality scoring model was performed using the least absolute shrinkage and selection operator, followed by logistic regression. The accuracy of the scoring model was assessed using the area under the receiver operating characteristic curve. The final model included eight variables: anosmia (OR: 0.280; 95%CI 0.095–0.826), dyspnoea (OR: 1.684; 95%CI 1.049–2.705), loss of consciousness (OR: 4.593; 95%CI 1.702–12.396), mean arterial pressure (OR: 0.928; 95%CI 0.900–0.957), peripheral oxygen saturation (OR: 0.981; 95%CI 0.967–0.996), neutrophil % (OR: 1.034; 95%CI 1.013–1.055), serum urea (OR: 1.018; 95%CI 1.010–1.026), affected lung area score (OR: 1.026; 95%CI 1.014–1.038). The Integrated Inpatient Mortality Prediction Score for COVID-19 (IMPACT) demonstrated a predictive value of 0.815 (95% CI 0.774–0.856) in the derivation cohort. Internal validation resulted in an AUROC of 0.770 (95% CI 0.661–0.879). Our study provides valuable evidence of the real-world application of AI in clinical settings. However, it is imperative to conduct prospective validation of our findings, preferably utilizing a control group and extending the application to broader populations.
UR - http://www.scopus.com/inward/record.url?scp=85183040813&partnerID=8YFLogxK
U2 - 10.1038/s41598-023-50564-9
DO - 10.1038/s41598-023-50564-9
M3 - Article
C2 - 38272920
AN - SCOPUS:85183040813
SN - 2045-2322
VL - 14
JO - Scientific reports
JF - Scientific reports
IS - 1
M1 - 2149
ER -