Degradation Characteristics of Mg-1,6Gd Alloy at Low Thickness Reduction of Warm Rolling

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review


Magnesium has been developed as a biodegradable bone implant material due to its similarity in elasticity modulus of bone. However, magnesium has a higher corrosion rate and a lower strength. Gadolinium is alloyed to magnesium in order to improve the corrosion resistance and then rolled to improve the strength due to grain refinement in rolling. Cold roll produced the finest grain, but magnesium has a poor formability. Due to this fact, warm rolling with temperature 247 – 375 oC is applied. Optical Microscope, Scanning Electron Microscope (SEM), and Energy Dispersive Spectrometry (EDS) are used for characterization. Electrochemical Impedance Spectroscopy (EIS) and Polarization test were carried out to observe the corrosion mechanism of Mg-Gd in SBF Kokubo to replicate a human body condition. The result of polarization test shows that the cross-rolled sample experienced an increase in E corr, with 0,15 and –0,048 V due to a better distribution of Gadolinium. EIS states that the single pass rolled sample has a stronger passive layer with 116 and 126 kΩ value of Rf due to a smaller grain size which resulted a fewer compression stress. The hydrogen evolution was also observed with immersion test. Keywords: uni-directional rolling, cross-directional rolling, corrosion, simulated body fluid, hydrogen evolution.
Original languageEnglish
Title of host publicationMaterials Science Forum
Publication statusPublished - 3 Jul 2020


Dive into the research topics of 'Degradation Characteristics of Mg-1,6Gd Alloy at Low Thickness Reduction of Warm Rolling'. Together they form a unique fingerprint.

Cite this