@inproceedings{13d0877e4ed94a1d87262210aff85fef,
title = "Degradable and porous Fe-Mn-C alloy for biomaterials candidate",
abstract = "Nowadays, degradable implants attract attention to be developed because it can improve the quality of life of patients. The degradable implant is expected to degrade easily in the body until the bone healing process already achieved. However, there is limited material that could be used as a degradable implant, polymer, magnesium, and iron. In the previous study, Fe-Mn-C alloys had succesfully produced austenitic phase. However, the weakness of the alloy is degradation rate of materials was considered below the expectation. This study aimed to produce porous Fe-Mn-C materials to improve degradation rate and reduce the density of alloy without losing it non-magnetic properties. Potassium carbonate (K2CO3) were chosen as filler material to produce foam structure by sintering and dissolution process. Multisteps sintering process under argon gas environment was performed to generate austenite phase. The product showed an increment of the degradation rate of the foamed Fe-Mn-C alloy compared with the solid Fe-Mn-C alloy without losing the Austenitic Structure.",
author = "Yudha Pratesa and Sri Harjanto and Almira Larasati and Bambang Suharno and Myrna Ariati",
note = "Publisher Copyright: {\textcopyright} 2018 Author(s). Published by AIP Publishing.; 2nd Biomedical Engineering's Recent Progress in Biomaterials, Drugs Development, and Medical Devices, ISBE 2017 ; Conference date: 25-07-2017 Through 26-07-2017",
year = "2018",
month = feb,
day = "13",
doi = "10.1063/1.5023941",
language = "English",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
editor = "Radon Dhelika and Yudan Whulanza and Ghiska Ramahdita and Wulan, {Praswasti P.D.K.}",
booktitle = "2nd Biomedical Engineering�s Recent Progress in Biomaterials, Drugs Development, and Medical Devices",
address = "United States",
}