TY - JOUR
T1 - Cryptocurrencies
T2 - hedging or financialization? behavioral time series analyses
AU - Chalid, Dony Abdul
AU - Handika, Rangga
N1 - Publisher Copyright:
© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2024
Y1 - 2024
N2 - This article investigates the time-series properties of cryptocurrency returns and compares them with currency and commodity returns. We perform and analyze the mean reversion, normality, unit root, high and low returns, correlation, Autoregressive Moving Average (ARMA) [2,2], Autoregressive (AR) [5], and long-run components in the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) [1,1] estimates. We also perform regression analyses to evaluate two possible behavioral biases: familiarity and disposition effect. Our time series analysis documents that cryptocurrencies are neither currencies nor commodities. We also show that adding cryptocurrency to a portfolio increases market efficiency and uncertainty. We also document that cryptocurrency investors exhibit the same familiarity and disposition effect biases as commodity and currency investors. Overall, we conclude that investors in cryptocurrencies tend to underestimate risk and misestimate future prices, as they do in commodity and currency markets. This study makes at least three contributions to the literature. First, we evaluate whether cryptocurrencies tend to hedge or financialization. Second, our analysis includes both univariate and portfolio dimensions. Third, this is a pioneering study on using behavioral bias analysis to determine whether a cryptocurrency is a commodity or a currency.
AB - This article investigates the time-series properties of cryptocurrency returns and compares them with currency and commodity returns. We perform and analyze the mean reversion, normality, unit root, high and low returns, correlation, Autoregressive Moving Average (ARMA) [2,2], Autoregressive (AR) [5], and long-run components in the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) [1,1] estimates. We also perform regression analyses to evaluate two possible behavioral biases: familiarity and disposition effect. Our time series analysis documents that cryptocurrencies are neither currencies nor commodities. We also show that adding cryptocurrency to a portfolio increases market efficiency and uncertainty. We also document that cryptocurrency investors exhibit the same familiarity and disposition effect biases as commodity and currency investors. Overall, we conclude that investors in cryptocurrencies tend to underestimate risk and misestimate future prices, as they do in commodity and currency markets. This study makes at least three contributions to the literature. First, we evaluate whether cryptocurrencies tend to hedge or financialization. Second, our analysis includes both univariate and portfolio dimensions. Third, this is a pioneering study on using behavioral bias analysis to determine whether a cryptocurrency is a commodity or a currency.
KW - ARMA
KW - behavioral bias
KW - cryptocurrencies
KW - Economics
KW - Finance, Investment & Securities
KW - GARCH
KW - Time-series
UR - http://www.scopus.com/inward/record.url?scp=85202749892&partnerID=8YFLogxK
U2 - 10.1080/23311975.2024.2394581
DO - 10.1080/23311975.2024.2394581
M3 - Article
AN - SCOPUS:85202749892
SN - 2331-1975
VL - 11
JO - Cogent Business and Management
JF - Cogent Business and Management
IS - 1
M1 - 2394581
ER -