Computer-Aided Diagnosis (CAD) to Detect Brain Abnormality from PET Image using Artificial Neural Network (ANN)

Y. Kusumawardani, Ratianto, P. Prajitno, D. S. Soejoko

Research output: Contribution to journalConference articlepeer-review

1 Citation (Scopus)

Abstract

PET imaging is powerful to diagnose the presence of abnormalities, staging cancer, and evaluating radiotherapy treatment results. Sometimes, small uptake is not easily visual recognized, hence an additional supporting method for its detection is needed. In this study, Computer-Aided Diagnosis (CAD) of brain abnormalities from PET images using segmentation and classification methods based on a feature in the form of Gray Level CoOccurrence Matrix (GLCM) was developed Artificial Neural Network (ANN) is used to deal with the classification problems arising in this application. We develop CAD in this study using MATLAB. A total number of samples were 360 images with 180 abnormal (14 patient) and 180 normal (20 patient) images were used as training and testing data. The result based on Receiver Operating Characteristic (ROC) illustrated that the training error was 4.22 ± 2.37 % and the test error was 12.30 ± 3.47%. These results mean that this developed CAD system can recognize normal and abnormal brain images.

Original languageEnglish
Article number012002
JournalJournal of Physics: Conference Series
Volume1505
Issue number1
DOIs
Publication statusPublished - 15 Jun 2020
Event3rd Annual Scientific Meeting on Medical Physics and Biophysics, PIT-FMB in conjunction with the 17th South-East Asia Congress of Medical Physics, SEACOMP 2019 - Bali, Indonesia
Duration: 8 Aug 201910 Aug 2019

Fingerprint

Dive into the research topics of 'Computer-Aided Diagnosis (CAD) to Detect Brain Abnormality from PET Image using Artificial Neural Network (ANN)'. Together they form a unique fingerprint.

Cite this