Comparison of conventional study model measurements and 3D digital study model measurements from laser scanned dental impressions

Research output: Contribution to journalConference articlepeer-review

5 Citations (Scopus)

Abstract

The field of orthodontics is always evolving,and this includes the use of innovative technology. One type of orthodontic technology is the development of three-dimensional (3D) digital study models that replace conventional study models made by stone. This study aims to compare the mesio-distal teeth width, intercanine width, and intermolar width measurements between a 3D digital study model and a conventional study model. Twelve sets of upper arch dental impressions were taken from subjects with non-crowding teeth. The impressions were taken twice, once with alginate and once with polivinylsiloxane. The alginate impressions used in the conventional study model and the polivinylsiloxane impressions were scanned to obtain the 3D digital study model. Scanning was performed using a laser triangulation scanner device assembled by the School of Electrical Engineering and Informatics at the Institut Teknologi Bandung and David Laser Scan software. For the conventional model, themesio-distal width, intercanine width, and intermolar width were measured using digital calipers; in the 3D digital study model they were measured using software. There were no significant differences between the mesio-distal width, intercanine width, and intermolar width measurments between the conventional and 3D digital study models (p>0.05). Thus, measurements using 3D digital study models are as accurate as those obtained from conventional study models.

Original languageEnglish
Article number012060
JournalJournal of Physics: Conference Series
Volume884
Issue number1
DOIs
Publication statusPublished - 30 Aug 2017
Event1st Physics and Technologies in Medicine and Dentistry Symposium, PTMDS 2017 - Depok, West Java, Indonesia
Duration: 15 Jul 201716 Jul 2017

Fingerprint

Dive into the research topics of 'Comparison of conventional study model measurements and 3D digital study model measurements from laser scanned dental impressions'. Together they form a unique fingerprint.

Cite this