Comparison of Bolton analysis and Little's irregularity index on laser scanned three-dimensional digital study models with conventional study models

H. Kurnia, N. A.I. Noerhadi

Research output: Contribution to journalConference articlepeer-review

Abstract

Three-dimensional digital study models were introduced following advances in digital technology. This study was carried out to assess the reliability of digital study models scanned by a laser scanning device newly assembled. The aim of this study was to compare the digital study models and conventional models. Twelve sets of dental impressions were taken from patients with mild-to-moderate crowding. The impressions were taken twice, one with alginate and the other with polyvinylsiloxane. The alginate impressions were made into conventional models, and the polyvinylsiloxane impressions were scanned to produce digital models. The mesiodistal tooth width and Little's irregularity index (LII) were measured manually with digital calipers on the conventional models and digitally on the digital study models. Bolton analysis was performed on each study models. Each method was carried out twice to check for intra-observer variability. The reproducibility (comparison of the methods) was assessed using independent-sample t-tests. The mesiodistal tooth width between conventional and digital models did not significantly differ (p > 0.05). Independent-sample t-tests did not identify statistically significant differences for Bolton analysis and LII (p = 0.603 for Bolton and p = 0894 for LII). The measurements of the digital study models are as accurate as those of the conventional models.

Original languageEnglish
Article number012061
JournalJournal of Physics: Conference Series
Volume884
Issue number1
DOIs
Publication statusPublished - 30 Aug 2017
Event1st Physics and Technologies in Medicine and Dentistry Symposium, PTMDS 2017 - Depok, West Java, Indonesia
Duration: 15 Jul 201716 Jul 2017

Fingerprint

Dive into the research topics of 'Comparison of Bolton analysis and Little's irregularity index on laser scanned three-dimensional digital study models with conventional study models'. Together they form a unique fingerprint.

Cite this