TY - JOUR
T1 - Comparative Study of Bismuth Ferrite Deposition Method on TiO2 Nanotube and Performance of Hydrogen Evolution in a Photoelectrochemical Dye-Sensitized Solar Cell Tandem System
AU - Yunita,
AU - Syauqi, Muhammad Iqbal
AU - Gunlazuardi, Jarnuzi
N1 - Funding Information:
The authors gratefully acknowledge the support from DGHE, Directorate General of Higher Education, for funding the research (PDUPT research contract No. NKB-174/UN2.RST/HKP.05.00/2021).
Publisher Copyright:
© 2022, Universitas Indonesia. All rights reserved.
PY - 2022/9
Y1 - 2022/9
N2 - Hydrogen is a renewable and environmentally friendly energy source that can replace fossil fuels by utilizing solar energy through water splitting. The hydrogen production was conducted in this research by using a tandem system of dye-sensitized solar cell–photoelectrochemical cell (DSSC–PEC) and a TiO2 nanotube coated with BiFeO3 (BiFeO3/TNT) as a photoanode in the PEC. The deposition of BiFeO3 on TNT was prepared using the following three methods: successive ionic layer adsorption and reaction (SILAR), ultrasonication-assisted SILAR, and ultrasonic– immersion method by varying the number of deposition cycles in each method. In this study, the optimum cycles for SILAR, ultrasonication-assisted SILAR, and ultrasonic–immersion methods were 15, 5, and 3, respectively. Results show that the BiFeO3 deposited on TNT using the ultrasonic–immersion method with three cycles (BiFeO3/TNT_UI3) demonstrates the best photoelectrochemical activity. The tandem system comprises BiFeO3/TNT_UI3 photoanode and Pt-coated TNT dark cathode PEC cell connected to TNT/N719-based DSSC with an efficiency of 1.27%. The constructed DSSC–PEC system could produce 3.11 × 10−6 mol hydrogen in 6 h with a solar-to-hydrogen (STH) efficiency of 0.0033% in an H-type reactor filled with 0.5 M H2SO4 electrolyte.
AB - Hydrogen is a renewable and environmentally friendly energy source that can replace fossil fuels by utilizing solar energy through water splitting. The hydrogen production was conducted in this research by using a tandem system of dye-sensitized solar cell–photoelectrochemical cell (DSSC–PEC) and a TiO2 nanotube coated with BiFeO3 (BiFeO3/TNT) as a photoanode in the PEC. The deposition of BiFeO3 on TNT was prepared using the following three methods: successive ionic layer adsorption and reaction (SILAR), ultrasonication-assisted SILAR, and ultrasonic– immersion method by varying the number of deposition cycles in each method. In this study, the optimum cycles for SILAR, ultrasonication-assisted SILAR, and ultrasonic–immersion methods were 15, 5, and 3, respectively. Results show that the BiFeO3 deposited on TNT using the ultrasonic–immersion method with three cycles (BiFeO3/TNT_UI3) demonstrates the best photoelectrochemical activity. The tandem system comprises BiFeO3/TNT_UI3 photoanode and Pt-coated TNT dark cathode PEC cell connected to TNT/N719-based DSSC with an efficiency of 1.27%. The constructed DSSC–PEC system could produce 3.11 × 10−6 mol hydrogen in 6 h with a solar-to-hydrogen (STH) efficiency of 0.0033% in an H-type reactor filled with 0.5 M H2SO4 electrolyte.
KW - BiFeO/TNT
KW - DSSC–PEC
KW - hydrogen production
UR - http://www.scopus.com/inward/record.url?scp=85139435311&partnerID=8YFLogxK
U2 - 10.7454/mss.v26i3.1387
DO - 10.7454/mss.v26i3.1387
M3 - Article
AN - SCOPUS:85139435311
SN - 2339-1995
VL - 26
SP - 190
EP - 199
JO - Makara Journal of Science
JF - Makara Journal of Science
IS - 3
ER -