TY - JOUR
T1 - Coating Material Development by Pulsed Laser Deposition for JIS SKD61 Steel Insert Pins Used in Aluminum Casting Industry
AU - Kosasih, Rusman
AU - Priadi, Dedi
AU - Suliyanti, Maria Margaretha
N1 - Funding Information:
The authors would like to express their appreciation to the University of Indonesia's Material and Metallurgical Engineering Department (postgraduate programme), the BRIN Fotonic Research Center, and PT AHM Laboratory for providing research opportunities and assistance during the experiment and characterization.
Publisher Copyright:
© 2023, International Journal of Technology. All Rights Reserved.
PY - 2023
Y1 - 2023
N2 - A Pulsed Laser Deposition (PLD) technique is a type of physical vapor deposition (PVD) technology. This research is one of a series of PVD studies aimed at determining the best PLD coating that can minimize the damage of steel pins made of SKD61 with a hardness of 48±1 HRc. The study began with the dummy blocks from SKD61 as research samples, followed by PVD-PLD with three coating materials as alternatives: Al/Cr (70:30), Al/Ti1 (50:50), and Al/Ti2 (63:37), all without active gases (N and C). The procedures used to test the research findings were FESEM, SEM, XRF, EDS, Vickers, and Rockwell Microhardness. The experiments were conducted at the BRIN Fotonic Research Center and the PT AHM Laboratory. The PLD process lasted for 10 minutes and employed an Nd: YAG laser with a wavelength of 1064 nm, a Q-switch with a time delay of 180 s, a pulse energy of 70 mJ, and a vacuum pressure of 1.161.35 Torr.Based on the results of the coating study, an AlTi1 coating was found to be the most effective material coating. The coating consisted of amorphous particles with a size range of 10 nm to 20 nm The coating had a thickness of 23 μm, and the surface hardness was measured to be 474-523 mHv for the single-layer coating and 477-501 mHv for the multilayer coating. The materials in both single-layer and multilayer coating samples have the same hardness in ascending order: AlCr, AlTi2, AlTi1, with a Ti concentration rise from 0.7% to 3.7%. The impact of the Ti element is also crucial in increasing hardness, wear resistance, and roughness.
AB - A Pulsed Laser Deposition (PLD) technique is a type of physical vapor deposition (PVD) technology. This research is one of a series of PVD studies aimed at determining the best PLD coating that can minimize the damage of steel pins made of SKD61 with a hardness of 48±1 HRc. The study began with the dummy blocks from SKD61 as research samples, followed by PVD-PLD with three coating materials as alternatives: Al/Cr (70:30), Al/Ti1 (50:50), and Al/Ti2 (63:37), all without active gases (N and C). The procedures used to test the research findings were FESEM, SEM, XRF, EDS, Vickers, and Rockwell Microhardness. The experiments were conducted at the BRIN Fotonic Research Center and the PT AHM Laboratory. The PLD process lasted for 10 minutes and employed an Nd: YAG laser with a wavelength of 1064 nm, a Q-switch with a time delay of 180 s, a pulse energy of 70 mJ, and a vacuum pressure of 1.161.35 Torr.Based on the results of the coating study, an AlTi1 coating was found to be the most effective material coating. The coating consisted of amorphous particles with a size range of 10 nm to 20 nm The coating had a thickness of 23 μm, and the surface hardness was measured to be 474-523 mHv for the single-layer coating and 477-501 mHv for the multilayer coating. The materials in both single-layer and multilayer coating samples have the same hardness in ascending order: AlCr, AlTi2, AlTi1, with a Ti concentration rise from 0.7% to 3.7%. The impact of the Ti element is also crucial in increasing hardness, wear resistance, and roughness.
KW - Coating material
KW - Minimize damage
KW - Pin SKD 61
KW - PLD process
UR - http://www.scopus.com/inward/record.url?scp=85164606439&partnerID=8YFLogxK
U2 - 10.14716/ijtech.v14i4.6046
DO - 10.14716/ijtech.v14i4.6046
M3 - Article
AN - SCOPUS:85164606439
SN - 2086-9614
VL - 14
SP - 833
EP - 842
JO - International Journal of Technology
JF - International Journal of Technology
IS - 4
ER -