Classification of Schizophrenia Data Using Support Vector Machine (SVM)

T. V. Rampisela, Z. Rustam

Research output: Contribution to journalConference articlepeer-review

32 Citations (Scopus)

Abstract

Schizophrenia is a severe and chronic mental disorder. This disorder is marked with disturbances in thoughts, perceptions, and behaviours. Due to these disturbances that can trigger Schizophrenics to commit suicide or attempt to do so, Schizophrenics have a lower life expectancy than the general population. Schizophrenia is also difficult to diagnose as there is no physical test to diagnose it yet and its symptoms are very similar to several other mental disorders. Using Northwestern University Schizophrenia Data, this research aims to distinguish people who are Schizophrenics and people who are not. The data consists of 392 observations and 65 variables that are demographic data and clinician-filled Scale for the Assessment of Positive and Negative Symptoms questionnaires. Classification method used is machine learning with Support Vector Machines (SVM). Simulations are done with different data and percentage of training data. In each simulation, accuracy is measured. Model performance validation and evaluation are done by averaging ten times Hold-Out Validations that were done. In conclusion, SVM successfully classified Schizophrenia data with final accuracy of 90.1%. Furthermore, SVM with linear kernel and Gaussian kernel reached an accuracy of 95.0% in at least one simulation in classifying Schizophrenia data.

Original languageEnglish
Article number012044
JournalJournal of Physics: Conference Series
Volume1108
Issue number1
DOIs
Publication statusPublished - 4 Dec 2018
Event2nd Mathematics, Informatics, Science and Education International Conference, MISEIC 2018 - Surabaya, Indonesia
Duration: 21 Jul 2018 → …

Fingerprint

Dive into the research topics of 'Classification of Schizophrenia Data Using Support Vector Machine (SVM)'. Together they form a unique fingerprint.

Cite this