Chemical constituents and potential cytotoxic activity of n- hexane fraction from Myristica fatua Houtt leaves

S. Fajriah, Megawati, Sumi Hudiyono Pws, Soleh Kosela, M. Hanafi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Citations (Scopus)

Abstract

The aims of this research were to determine the chemical constituents of n- hexane fraction from Myristica fatua Houtt leaves by Gas Chromatograpy/Mass Spectrometry (GC/MS) and their cytotoxic activities against MCF-7 cell lines. The results indicated that sesquiterpenes and fatty acids were major compounds of this fraction, there were trans-calamenene (17.75 %), hexadecanoic acid (11.14 %), caryophyllene (7.49 %), α-muurolene (6.99 %), and γ-muurolene (6.60 %). In vitro anticancer activity test against breast cancer MCF-7 cell lines showed potential cytotoxic at IC50 2.19 μg/mL.

Original languageEnglish
Title of host publicationInternational Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016
Subtitle of host publicationProceedings of the 2nd International Symposium on Current Progress in Mathematics and Sciences 2016
EditorsKiki Ariyanti Sugeng, Djoko Triyono, Terry Mart
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735415362
DOIs
Publication statusPublished - 10 Jul 2017
Event2nd International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016 - Depok, Jawa Barat, Indonesia
Duration: 1 Nov 20162 Nov 2016

Publication series

NameAIP Conference Proceedings
Volume1862
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference2nd International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016
Country/TerritoryIndonesia
CityDepok, Jawa Barat
Period1/11/162/11/16

Keywords

  • GC/MS
  • MCF-7 cell lines
  • Myristica fatua Houtt
  • fatty acids
  • sesquiterpenes

Fingerprint

Dive into the research topics of 'Chemical constituents and potential cytotoxic activity of n- hexane fraction from Myristica fatua Houtt leaves'. Together they form a unique fingerprint.

Cite this