Characteristics of Al-Si-Mg Reinforced SiC Composites Produced by Stir Casting Route

Research output: Contribution to journalConference articlepeer-review

12 Citations (Scopus)

Abstract

Al-Si-Mg alloy that is strengthened by silicon carbide particles has the potential to have excellent mechanical properties with light weight. In this study, metal matrix composites reinforced silicon carbide from 2 vf-% to 15 vf-% and magnesium amounted to 10 wt-% as an external dopant were fabricated by stir casting route. The magnesium was added to promote the wetting between Al matrix and reinforced SiC. The process involved SiC blended inside the molten Al by a stirrer with a rotational speed of 500 rpm at 800 °C for 2 minutes and degassed with Ar gas for 4 minutes to remove all of the gas content in the molten Al. The molten composite was then cast into the plate and tensile test sample molds. The effect of SiC addition on the mechanical properties and microstructure of the composites was investigated. The result showed that the optimum tensile strength was reached at 8 vf-% SiC with the value of 175 MPa, while the elongation was 9.1%. The maximum hardness and wear rate were achieved at 10 vf-% SiC with the values of 57 HRB and 0.0022 mm3/m, respectively. Such increase was related to the microstructures dominated by the presence of Chinese script, primary and eutectic Mg2Si which were contributed to the mechanical properties of the composites.

Original languageEnglish
Article number012089
JournalIOP Conference Series: Materials Science and Engineering
Volume202
Issue number1
DOIs
Publication statusPublished - 31 May 2017
Event4th International Conference on Advanced Materials Science and Technology 2016, ICAMST 2016 - Malang, Indonesia
Duration: 27 Sep 201628 Sep 2016

Keywords

  • Al-Si-Mg alloy
  • composites
  • mechanical properties
  • SiC
  • stir casting

Fingerprint Dive into the research topics of 'Characteristics of Al-Si-Mg Reinforced SiC Composites Produced by Stir Casting Route'. Together they form a unique fingerprint.

Cite this