TY - JOUR
T1 - Characteristics of Al-Si-Mg Reinforced SiC Composites Produced by Stir Casting Route
AU - Syahrial,, Anne Zulfia
AU - Zhakiah, T.
AU - Dhaneswara, Donanta
AU - Sutopo, null
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2017/5/31
Y1 - 2017/5/31
N2 - Al-Si-Mg alloy that is strengthened by silicon carbide particles has the potential to have excellent mechanical properties with light weight. In this study, metal matrix composites reinforced silicon carbide from 2 vf-% to 15 vf-% and magnesium amounted to 10 wt-% as an external dopant were fabricated by stir casting route. The magnesium was added to promote the wetting between Al matrix and reinforced SiC. The process involved SiC blended inside the molten Al by a stirrer with a rotational speed of 500 rpm at 800 °C for 2 minutes and degassed with Ar gas for 4 minutes to remove all of the gas content in the molten Al. The molten composite was then cast into the plate and tensile test sample molds. The effect of SiC addition on the mechanical properties and microstructure of the composites was investigated. The result showed that the optimum tensile strength was reached at 8 vf-% SiC with the value of 175 MPa, while the elongation was 9.1%. The maximum hardness and wear rate were achieved at 10 vf-% SiC with the values of 57 HRB and 0.0022 mm3/m, respectively. Such increase was related to the microstructures dominated by the presence of Chinese script, primary and eutectic Mg2Si which were contributed to the mechanical properties of the composites.
AB - Al-Si-Mg alloy that is strengthened by silicon carbide particles has the potential to have excellent mechanical properties with light weight. In this study, metal matrix composites reinforced silicon carbide from 2 vf-% to 15 vf-% and magnesium amounted to 10 wt-% as an external dopant were fabricated by stir casting route. The magnesium was added to promote the wetting between Al matrix and reinforced SiC. The process involved SiC blended inside the molten Al by a stirrer with a rotational speed of 500 rpm at 800 °C for 2 minutes and degassed with Ar gas for 4 minutes to remove all of the gas content in the molten Al. The molten composite was then cast into the plate and tensile test sample molds. The effect of SiC addition on the mechanical properties and microstructure of the composites was investigated. The result showed that the optimum tensile strength was reached at 8 vf-% SiC with the value of 175 MPa, while the elongation was 9.1%. The maximum hardness and wear rate were achieved at 10 vf-% SiC with the values of 57 HRB and 0.0022 mm3/m, respectively. Such increase was related to the microstructures dominated by the presence of Chinese script, primary and eutectic Mg2Si which were contributed to the mechanical properties of the composites.
KW - Al-Si-Mg alloy
KW - SiC
KW - composites
KW - mechanical properties
KW - stir casting
UR - http://www.scopus.com/inward/record.url?scp=85021767245&partnerID=8YFLogxK
U2 - 10.1088/1757-899X/202/1/012089
DO - 10.1088/1757-899X/202/1/012089
M3 - Conference article
AN - SCOPUS:85021767245
SN - 1757-8981
VL - 202
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 1
M1 - 012089
T2 - 4th International Conference on Advanced Materials Science and Technology 2016, ICAMST 2016
Y2 - 27 September 2016 through 28 September 2016
ER -