Characteristic polynomial and eigenvalues of antiadjacency matrix of directed unicyclic flower vase graph

Research output: Contribution to journalConference articlepeer-review

Abstract

This research discussed the characteristic polynomial and eigenvalues of antiadjacency matrix of directed unicyclic flower vase graph. The entries of the antiadjacency matrix of a directed graph represent the presence or the absence of a directed arc from one vertex to the others. If A is the adjacency matrix of a graph G→, then the antiadjacency matrix B of graph G→ is B = J − A, where J is the square matrix with all entries equal to one. The general form of characteristic polynomial coefficients of the antiadjacency matrix of directed unicyclic flower vase graph can be obtained by calculating the sum of determinants of the antiadjacency matrices of all induced cyclic and acyclic subgraphs, while the eigenvalues were obtained by using polynomial factorization and Horner's method. This paper gives the characteristic polynomial coefficients and eigenvalues of antiadjacency matrix of directed unicyclic flower vase graph. The characteristic polynomial can be considered as a function that depends on the number of vertices.

Original languageEnglish
Article number012055
JournalJournal of Physics: Conference Series
Volume1722
Issue number1
DOIs
Publication statusPublished - 7 Jan 2021
Event10th International Conference and Workshop on High Dimensional Data Analysis, ICW-HDDA 2020 - Sanur-Bali, Indonesia
Duration: 12 Oct 202015 Oct 2020

Fingerprint Dive into the research topics of 'Characteristic polynomial and eigenvalues of antiadjacency matrix of directed unicyclic flower vase graph'. Together they form a unique fingerprint.

Cite this