Catalytic conversion of beef tallow with MgO derived from MgCO3for biofuels production

Research output: Contribution to journalConference articlepeer-review

2 Citations (Scopus)


Fuels from biological sources, such as oils and fats, receive much attention. Beef tallow is a cheap and abundant feedstock that can be converted into renewable fuels. Catalytic conversion of beef tallow was accomplished with the MgO catalyst derived from MgCO3. Magnesium oxide catalyst was prepared by calcination of MgCO3 at temperature 700 C. The catalyst was tested for its performance in a fixed bed reactor at temperature 300 C for 60 min. Conversion of beef tallow to hydrocarbons biofuels was studied. The MgO catalyst was characterized by nitrogen adsorption isotherms (BET), powder X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). The assay activity of MgO shows all fatty acids derived from beef tallow have converted into liquid and gas fraction with a black paste residue that has a boiling point of more than 300 C. The results of the liquid fraction composition depend on the ratio of the given MgO catalyst. At the ratio of MgO catalysts and feeds 2 wt.%, the results of liquid fraction contain the alkanes (45.61%), alkenes (4.12%), alcohols (3.96%), ketones (8.55 %), esters (23.42 %), and cyclic compounds (14.34 %), while at the ratio of 4 wt.%, the liquid fraction contains the alkanes (55.56 %), alkenes (8.94 %), alcohols (5.27 %), ketones (13.73 %) and cyclic compounds (16.50 %).

Original languageEnglish
Article number012049
JournalIOP Conference Series: Materials Science and Engineering
Issue number1
Publication statusPublished - 2020
Event4th International Symposium on Current Progress in Functional Materials, ISCPFM 2019 - Bali, Indonesia
Duration: 6 Nov 20197 Nov 2019


Dive into the research topics of 'Catalytic conversion of beef tallow with MgO derived from MgCO3for biofuels production'. Together they form a unique fingerprint.

Cite this