Carbon nanotubes shynthesis in fluidized bed reactor equipped with a cyclone

Research output: Contribution to journalConference articlepeer-review

1 Citation (Scopus)


This work aimed to observe the performance of a fluidized bed reactor which was equipped with a cyclone in the synthesis of carbon nanotubes (CNT) by chemical vapor deposition. Liquefied petroleum gas with a constant volumetric flow rate of 1940 cm3/minutes was fed to the reactor as a carbon source, while a combination of metal components of Fe-Co-Mo supported on MgO was used as catalyst. The CNT synthesis was carried out at a reaction temperature which was maintained at around 800 - 850 °C for 1 hour. The CNT yield was decreased sharply when the catalyst feed was increased. The carbon efficiency is directly proportional to the mass of catalyst fed. It was found from the experiment that the mass of as-grown CNT increased in proportion to the increase of the catalyst mass fed. A sharp increase of the mass percentage of carbon nanotubes entrainment happened when the catalyst feed was raised from 3 to 7 grams. Agglomerates of carbon nanotubes have been formed. The agglomerates composed of mutually entangled carbon nanotubes which have an outer diameter range 8 - 14 nm and an inner diameter range 4 - 10 nm, which confirmed that the multi-walled carbon nanotubes were formed in this synthesis. It was found that the mesopores dominate the pore structure of the CNT product and contribute more than 90 % of the total pore volume.

Original languageEnglish
Article number012009
JournalIOP Conference Series: Materials Science and Engineering
Issue number1
Publication statusPublished - 28 Mar 2018
Event15th International Conference on Quality in Research, QiR 2017 - Nusa Dua, Bali, Indonesia
Duration: 24 Jul 201727 Jul 2017


Dive into the research topics of 'Carbon nanotubes shynthesis in fluidized bed reactor equipped with a cyclone'. Together they form a unique fingerprint.

Cite this