Bootstrapping Energy-Energy Correlation in Planar oΓ = 4 Supersymmetric Yang-Mills

R. G. Mulyawan, A. Salam, I. Fachruddin

Research output: Contribution to journalConference articlepeer-review


The two-point energy flow correlation, alternatively dubbed the energy-energy correlation (EEC), is a class of conformal field theory observable in the maximally supersymmetric Yang-Mills theory (oΓ = 4) related to the event shapes in scattering experiments. It has been calculated up to the next-to-leading order (NLO) recently, showcasing the simplicity of the correlation function. This paper calculates the EEC using an approach based on its polylogarithmic functions. Using the amplitude bootstrap method, two ansatzes are made for the energy flow operators, namely the polylogarithm ansatz crafted using the Symbols method, and the polynomial ansatz based on the results from the NLO correction. The computation is carried out in the leading order (LO) and NLO order. After the computation is made, physical constraints are discovered and accordingly applied to the ansatz, namely the symmetry and end-point kinematics constraints. The resulting computation retrieved the energy flow correlation calculated previously using the Mellin-Barnes representation. The non-trivial nature of the result implies a simpler way to calculate the energy flow correlation without the conformal field theory-based approach.

Original languageEnglish
Article number012049
JournalJournal of Physics: Conference Series
Issue number1
Publication statusPublished - 2022
Event11th National Physics Seminar, SNF 2022 - Virtual, Online
Duration: 24 Jun 202225 Jun 2022


Dive into the research topics of 'Bootstrapping Energy-Energy Correlation in Planar oΓ = 4 Supersymmetric Yang-Mills'. Together they form a unique fingerprint.

Cite this