Skip to main navigation
Skip to search
Skip to main content
Universitas Indonesia Home
Home
Profiles
Research units
Research output
Equipments
Projects
Activities
Press/Media
Search by expertise, name or affiliation
Bayesian Gaussian finite mixture model
J. Mirra,
S. Abdullah
Department of Mathematics
Research output
:
Contribution to journal
›
Conference article
›
peer-review
2
Citations (Scopus)
Overview
Fingerprint
Fingerprint
Dive into the research topics of 'Bayesian Gaussian finite mixture model'. Together they form a unique fingerprint.
Sort by
Weight
Alphabetically
Keyphrases
Posterior Distribution
100%
Grouped Data
100%
Gaussian Finite Mixture Model
100%
Parameter Estimation
50%
Complete Data
50%
Partitioning Method
50%
Hierarchical Clustering
50%
K-means
50%
Gibbs Sampling
50%
Bayesian Approach
50%
Markov Chain Monte Carlo
50%
Sampling Model
50%
Data Distribution
50%
Gaussian Distribution
50%
Prior Distribution
50%
Finite Mixture Model
50%
Alternative Means
50%
Monkey Eye
50%
Mathematics
Bayesian
100%
Gaussian Distribution
100%
Posterior Distribution
100%
Finite Mixture Model
100%
Parameter Estimation
50%
Subpopulation
50%
Complete Data
50%
Markov Chain Monte Carlo
50%
Bayesian Approach
50%
Data Distribution
50%
Hierarchical Clustering
50%
Gibbs Free Energy
50%