TY - JOUR
T1 - Bathymetry Extraction from Spot 7 Satellite Imagery Using Random Forest Methods
AU - Rosid, Mohammad Syamsu
PY - 2019
Y1 - 2019
N2 - The scope of this research is the application of the random forest method to SPOT 7 data to produce bathymetry information for shallow waters in Indonesia. The study aimed to analyze the effect of base objects in shallow marine habitats on estimating bathymetry from SPOT 7 satellite imagery. SPOT 7 satellite imagery of the shallow sea waters of Gili Matra, West Nusa Tenggara Province was used in this research. The estimation of bathymetry was carried out using two in-situ depth-data modifications, in the form of a random forest algorithm used both without and with benthic habitats (coral reefs, seagrass, macroalgae, and substrates). For bathymetry estimation from SPOT 7 data, the first modification (without benthic habitats) resulted in a 90.2% coefficient of determination (R2) and 1.57 RMSE, while the second modification (with benthic habitats) resulted in an 85.3% coefficient of determination (R2) and 2.48 RMSE. This research showed that the first modification achieved slightly better results than the second modification; thus, the benthic habitat did not significantly influence bathymetry estimation from SPOT 7 imagery.
AB - The scope of this research is the application of the random forest method to SPOT 7 data to produce bathymetry information for shallow waters in Indonesia. The study aimed to analyze the effect of base objects in shallow marine habitats on estimating bathymetry from SPOT 7 satellite imagery. SPOT 7 satellite imagery of the shallow sea waters of Gili Matra, West Nusa Tenggara Province was used in this research. The estimation of bathymetry was carried out using two in-situ depth-data modifications, in the form of a random forest algorithm used both without and with benthic habitats (coral reefs, seagrass, macroalgae, and substrates). For bathymetry estimation from SPOT 7 data, the first modification (without benthic habitats) resulted in a 90.2% coefficient of determination (R2) and 1.57 RMSE, while the second modification (with benthic habitats) resulted in an 85.3% coefficient of determination (R2) and 2.48 RMSE. This research showed that the first modification achieved slightly better results than the second modification; thus, the benthic habitat did not significantly influence bathymetry estimation from SPOT 7 imagery.
M3 - Article
SN - 0216-6739
JO - International Journal of Remote Sensing and Earth Sciences (IJReSES)
JF - International Journal of Remote Sensing and Earth Sciences (IJReSES)
ER -