TY - JOUR
T1 - Attention-Based Semantic Segmentation Networks for Forest Applications
AU - Lim, See Ven
AU - Zulkifley, Mohd Asyraf
AU - Saleh, Azlan
AU - Saputro, Adhi Harmoko
AU - Abdani, Siti Raihanah
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/12
Y1 - 2023/12
N2 - Deforestation remains one of the key concerning activities around the world due to commodity-driven extraction, agricultural land expansion, and urbanization. The effective and efficient monitoring of national forests using remote sensing technology is important for the early detection and mitigation of deforestation activities. Deep learning techniques have been vastly researched and applied to various remote sensing tasks, whereby fully convolutional neural networks have been commonly studied with various input band combinations for satellite imagery applications, but very little research has focused on deep networks with high-resolution representations, such as HRNet. In this study, an optimal semantic segmentation architecture based on high-resolution feature maps and an attention mechanism is proposed to label each pixel of the satellite imagery input for forest identification. The selected study areas are located in Malaysian rainforests, sampled from 2016, 2018, and 2020, downloaded using Google Earth Pro. Only a two-class problem is considered for this study, which is to classify each pixel either as forest or non-forest. HRNet is chosen as the baseline architecture, in which the hyperparameters are optimized before being embedded with an attention mechanism to help the model to focus on more critical features that are related to the forest. Several variants of the proposed methods are validated on 6120 sliced images, whereby the best performance reaches 85.58% for the mean intersection over union and 92.24% for accuracy. The benchmarking analysis also reveals that the attention-embedded high-resolution architecture outperforms U-Net, SegNet, and FC-DenseNet for both performance metrics. A qualitative analysis between the baseline and attention-based models also shows that fewer false classifications and cleaner prediction outputs can be observed in identifying the forest areas.
AB - Deforestation remains one of the key concerning activities around the world due to commodity-driven extraction, agricultural land expansion, and urbanization. The effective and efficient monitoring of national forests using remote sensing technology is important for the early detection and mitigation of deforestation activities. Deep learning techniques have been vastly researched and applied to various remote sensing tasks, whereby fully convolutional neural networks have been commonly studied with various input band combinations for satellite imagery applications, but very little research has focused on deep networks with high-resolution representations, such as HRNet. In this study, an optimal semantic segmentation architecture based on high-resolution feature maps and an attention mechanism is proposed to label each pixel of the satellite imagery input for forest identification. The selected study areas are located in Malaysian rainforests, sampled from 2016, 2018, and 2020, downloaded using Google Earth Pro. Only a two-class problem is considered for this study, which is to classify each pixel either as forest or non-forest. HRNet is chosen as the baseline architecture, in which the hyperparameters are optimized before being embedded with an attention mechanism to help the model to focus on more critical features that are related to the forest. Several variants of the proposed methods are validated on 6120 sliced images, whereby the best performance reaches 85.58% for the mean intersection over union and 92.24% for accuracy. The benchmarking analysis also reveals that the attention-embedded high-resolution architecture outperforms U-Net, SegNet, and FC-DenseNet for both performance metrics. A qualitative analysis between the baseline and attention-based models also shows that fewer false classifications and cleaner prediction outputs can be observed in identifying the forest areas.
KW - artificial intelligence
KW - attention mechanism
KW - deep learning
KW - forest
KW - remote sensing
UR - http://www.scopus.com/inward/record.url?scp=85180617333&partnerID=8YFLogxK
U2 - 10.3390/f14122437
DO - 10.3390/f14122437
M3 - Article
AN - SCOPUS:85180617333
SN - 1999-4907
VL - 14
JO - Forests
JF - Forests
IS - 12
M1 - 2437
ER -