TY - JOUR
T1 - Assessment of the capability of 3D stratified flow finite element model in characterizing meander dynamics
AU - Marthanty, Raden Rara Dwinanti Rika
AU - Soeryantono, Herr
AU - Carlier, Erick
AU - Sutjiningsih, Dwita
N1 - Publisher Copyright:
© 2014 Journal of Urban and Environmental Engineering (JUEE). All rights reserved.
PY - 2014/9/23
Y1 - 2014/9/23
N2 - There have been attempts to simulate meander dynamics (Langbein & Leopold, 1966; Oodgard, 1989; Campoerale et al., 2007; da Silva & El-Tahawy, 2008; Duan & Julien, 2010; Blanckaert & de Vriend, 2010; Esfahani & Keshavarzi, 2011). Meandering geometry is complex phenomena (Chanson, 2004; Wu, 2008), this would include the dynamics of flow properties and of morphology. Simulating meander flow dynamics is mostly popular using either Finite Element Method (FEM) or Finite Volume Method (FVM) where are based on Eulerian description, and based on stationer grid-based methods (Wormleaton & Ewunetu, 2006; Wu, 2008; Duan & Julien, 2010; Gomez- Gesteira et al., 2010). As such this model is lack of capability in simulating the dynamics of meander morphology; much effort is put through to overcome this issue with such as Smoothed Particle Hydrodynamics (SPH), Boundary Element Methods, Arbitrary Lagrangian Eulerian, etc. This paper has two objectives; to identify meander flow characteristics and sediment transport distribution patterns, and to simulate meander flow characteristics and sediment transport distribution patterns using FEM. This study has identified that the key of dynamics of flow characteristics are helical flow and coherent structures, and the key of dynamics of transport characteristics are erosion-deposition zone patterns. The finite element model using in this study, RMA has shown its capability to simulate the meander key characteristics above, for small deflection angles (30°) location of maximum erosion-deposition zones near the crossover of the sinuosity, for intermediate deflection angles (70°) location of maximum erosion-deposition zones between the crossover and apex of the sinuosity, and for large deflection angles (110°) location of maximum erosion-deposition zones near the apex of the sinuosity, these are agreed with experiments of Odgaard (1989), da Silva (2006), da Silva et al. (2006) and Esfahani & Keshavarzi (2012). These results can be used as a reference to develop a method to model meander morpho-dynamics.
AB - There have been attempts to simulate meander dynamics (Langbein & Leopold, 1966; Oodgard, 1989; Campoerale et al., 2007; da Silva & El-Tahawy, 2008; Duan & Julien, 2010; Blanckaert & de Vriend, 2010; Esfahani & Keshavarzi, 2011). Meandering geometry is complex phenomena (Chanson, 2004; Wu, 2008), this would include the dynamics of flow properties and of morphology. Simulating meander flow dynamics is mostly popular using either Finite Element Method (FEM) or Finite Volume Method (FVM) where are based on Eulerian description, and based on stationer grid-based methods (Wormleaton & Ewunetu, 2006; Wu, 2008; Duan & Julien, 2010; Gomez- Gesteira et al., 2010). As such this model is lack of capability in simulating the dynamics of meander morphology; much effort is put through to overcome this issue with such as Smoothed Particle Hydrodynamics (SPH), Boundary Element Methods, Arbitrary Lagrangian Eulerian, etc. This paper has two objectives; to identify meander flow characteristics and sediment transport distribution patterns, and to simulate meander flow characteristics and sediment transport distribution patterns using FEM. This study has identified that the key of dynamics of flow characteristics are helical flow and coherent structures, and the key of dynamics of transport characteristics are erosion-deposition zone patterns. The finite element model using in this study, RMA has shown its capability to simulate the meander key characteristics above, for small deflection angles (30°) location of maximum erosion-deposition zones near the crossover of the sinuosity, for intermediate deflection angles (70°) location of maximum erosion-deposition zones between the crossover and apex of the sinuosity, and for large deflection angles (110°) location of maximum erosion-deposition zones near the apex of the sinuosity, these are agreed with experiments of Odgaard (1989), da Silva (2006), da Silva et al. (2006) and Esfahani & Keshavarzi (2012). These results can be used as a reference to develop a method to model meander morpho-dynamics.
KW - Deposition
KW - Finite element methods
KW - Flow structures
KW - Helical flow
KW - Meander dynamics
KW - RMA-10
KW - RMA-11
KW - Sediment transport
KW - Sedimentation
UR - http://www.scopus.com/inward/record.url?scp=84942118281&partnerID=8YFLogxK
U2 - 10.4090/juee.2014.v8n2.155166
DO - 10.4090/juee.2014.v8n2.155166
M3 - Article
AN - SCOPUS:84942118281
SN - 1982-3932
VL - 8
SP - 155
EP - 166
JO - Journal of Urban and Environmental Engineering
JF - Journal of Urban and Environmental Engineering
IS - 2
ER -