Assessment of anaerobic biodegradability of five different solid organic wastes

Gabriel Andari Kristanto, Huinny Asaloei

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Citations (Scopus)

Abstract

The concept of waste to energy emerges as an alternative solution to increasing waste generation and energy crisis. In the waste to energy concept, waste will be used to produce renewable energy through thermochemical, biochemical, and physiochemical processes. In an anaerobic digester, organic matter brake-down due to anaerobic bacteria produces methane gas as energy source. The organic waste break-down is affected by various characteristics of waste components, such as organic matter content (C, N, O, H, P), solid contents (TS and VS), nutrients ratio (C/N), and pH. This research aims to analyze biodegradability and potential methane production (CH4) from organic waste largely available in Indonesia. Five solid wastes comprised of fecal sludge, cow rumen, goat farm waste, traditional market waste, and tofu dregs were analyzed which showed tofu dregs as waste with the highest rate of biodegradability compared to others since the tofu dregs do not contain any inhibitor which is lignin, have 2.7%VS, 14 C/N ratios and 97.3% organic matter. The highest cumulative methane production known as Biochemical Methane Potential was achieved by tofu dregs with volume of 77?ml during 30-day experiment which then followed by cow rumen, goat farm waste, and traditional market waste. Subsequently, methane productions were calculated through percentage of COD reduction, which showed the efficiency of 99.1% that indicates complete conversion of the high organic matter into methane.

Original languageEnglish
Title of host publicationRenewable Energy Technology and Innovation for Sustainable Development
Subtitle of host publicationProceedings of the International Tropical Renewable Energy Conference, iTREC 2016
EditorsNofrijon Sofyan
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735414945
DOIs
Publication statusPublished - 28 Mar 2017
Event1st International Tropical Renewable Energy Conference: Renewable Energy Technology and Innovation for Sustainable Development, iTREC 2016 - Bogor, Indonesia
Duration: 26 Oct 201628 Oct 2016

Publication series

NameAIP Conference Proceedings
Volume1826
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference1st International Tropical Renewable Energy Conference: Renewable Energy Technology and Innovation for Sustainable Development, iTREC 2016
Country/TerritoryIndonesia
CityBogor
Period26/10/1628/10/16

Fingerprint

Dive into the research topics of 'Assessment of anaerobic biodegradability of five different solid organic wastes'. Together they form a unique fingerprint.

Cite this