TY - JOUR
T1 - Applied voltage optimization for denitrification process improvement by denitrifying species of Pseudomonas in microbial electrolysis cell (MEC)
AU - Ekadewi, Putty
AU - Hardhi, Matthew
AU - Puspitarini, Putri Anggun
AU - Istiqomah, Hidayati
AU - Gomez, Cristina
AU - Arbianti, Rita
AU - Utami, Tania Surya
AU - Hermansyah, Heri
N1 - Publisher Copyright:
© The Authors, published by EDP Sciences, 2018.
PY - 2018/11/26
Y1 - 2018/11/26
N2 - Denitrification is the conversion process of nitrate to gaseous nitrogen forms carried out by bacteria commonly referred to as denitrifiers. Microbial Electrolysis Cell (MEC) is a type of bioelectrochemical system (BES) that is connected to external power source to aid the reactions. This research investigates the effect of applied voltage value on denitrification by nitrate removal efficiency of two model denitrifying species from the genus Pseudomonas in single-chambered MEC. Pseudomonas aeruginosa and Pseudomonas nitroreducens exhibited native removal efficiency at 70.62% and 68.20%, respectively. These values respectively reached up to 89.67% and 88.58% at 1.20 V, the upper limit of this study. Pseudomonas aeruginosa displayed better performance in MEC based off its produced current stability (mA) across the 0.35-1.20 V range. The effect of applied voltage on nitrate removal efficiency and setup performance was more prominent on known exoelectrogenic species of Pseudomonas such as Pseudomonas aeruginosa compared to Pseudomonas nitroreducens. Operating applied voltages of 0.35 V and 0.70 V was recommended for the application of the system based on technical and economical considerations. Further studies are needed to determine the response of the bacteria on wider range of applied voltages in MEC as well as elucidating these effects on autotrophic systems.
AB - Denitrification is the conversion process of nitrate to gaseous nitrogen forms carried out by bacteria commonly referred to as denitrifiers. Microbial Electrolysis Cell (MEC) is a type of bioelectrochemical system (BES) that is connected to external power source to aid the reactions. This research investigates the effect of applied voltage value on denitrification by nitrate removal efficiency of two model denitrifying species from the genus Pseudomonas in single-chambered MEC. Pseudomonas aeruginosa and Pseudomonas nitroreducens exhibited native removal efficiency at 70.62% and 68.20%, respectively. These values respectively reached up to 89.67% and 88.58% at 1.20 V, the upper limit of this study. Pseudomonas aeruginosa displayed better performance in MEC based off its produced current stability (mA) across the 0.35-1.20 V range. The effect of applied voltage on nitrate removal efficiency and setup performance was more prominent on known exoelectrogenic species of Pseudomonas such as Pseudomonas aeruginosa compared to Pseudomonas nitroreducens. Operating applied voltages of 0.35 V and 0.70 V was recommended for the application of the system based on technical and economical considerations. Further studies are needed to determine the response of the bacteria on wider range of applied voltages in MEC as well as elucidating these effects on autotrophic systems.
UR - http://www.scopus.com/inward/record.url?scp=85058676637&partnerID=8YFLogxK
U2 - 10.1051/e3sconf/20186702027
DO - 10.1051/e3sconf/20186702027
M3 - Conference article
AN - SCOPUS:85058676637
SN - 2555-0403
VL - 67
JO - E3S Web of Conferences
JF - E3S Web of Conferences
M1 - 02027
T2 - 3rd International Tropical Renewable Energy Conference "Sustainable Development of Tropical Renewable Energy", i-TREC 2018
Y2 - 6 September 2018 through 8 September 2018
ER -