TY - JOUR
T1 - Antiviral effects of Curcuma longa L. against dengue virus in vitro and in vivo
AU - Ichsyani, M.
AU - Ridhanya, A.
AU - Risanti, M.
AU - Desti, H.
AU - Ceria, R.
AU - Putri, D. H.
AU - Sudiro, T. M.
AU - Dewi, B. E.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2017/12/30
Y1 - 2017/12/30
N2 - Dengue is the most common infective disease caused by dengue virus (DENV) and endemic diseases in tropical and subtropical areas. Until now, there is no specific antiviral for dengue infection. It is known that viral load is related to disease severity. Curcuma longa L. (turmeric) with curcumin as major active compound has been identified for its antiviral effect. This study to determine antiviral effect of C. longa extract on DENV-2 in vitro and in vivo along with its toxicity in liver and kidney of ddY mice. Antiviral activity (IC50) and toxicity (CC50) in vitro was examined on Huh7it-1 cells by focus assay and a MTT assay, respectively. To determine the selectivity index (SI), we used CC50 and IC50 value. The safe doses obtained were used for toxicity tests of liver and kidney with histopathological and biochemical observations. The C. longa extracts was given orally with dose of 0.147 mg/mL for each mice at 2 hours after injected with DENV-2 infected Huh7it-1 cells. Serum was collected from intraorbital at 6 hours and 24 hours after infection and focus assay was used to determine viral load. In this study, the acquired value of IC50 was 17,91 μg/mL whereas the value of CC50 was 85,4 μg/mL. The value of SI of C. longa was 4.8. In vivo, we found that C. longa remarkable reduced of viral load after 24 hour. Histopathological examination showed no specific abnormalities in liver and kidney. There was no significant increase in levels of SGPT, SGOT, urea, and creatinine. From this study it can be concluded that C. longa could potentially be used as antiviral against DENV with low cytotoxicity and effective inhibition.
AB - Dengue is the most common infective disease caused by dengue virus (DENV) and endemic diseases in tropical and subtropical areas. Until now, there is no specific antiviral for dengue infection. It is known that viral load is related to disease severity. Curcuma longa L. (turmeric) with curcumin as major active compound has been identified for its antiviral effect. This study to determine antiviral effect of C. longa extract on DENV-2 in vitro and in vivo along with its toxicity in liver and kidney of ddY mice. Antiviral activity (IC50) and toxicity (CC50) in vitro was examined on Huh7it-1 cells by focus assay and a MTT assay, respectively. To determine the selectivity index (SI), we used CC50 and IC50 value. The safe doses obtained were used for toxicity tests of liver and kidney with histopathological and biochemical observations. The C. longa extracts was given orally with dose of 0.147 mg/mL for each mice at 2 hours after injected with DENV-2 infected Huh7it-1 cells. Serum was collected from intraorbital at 6 hours and 24 hours after infection and focus assay was used to determine viral load. In this study, the acquired value of IC50 was 17,91 μg/mL whereas the value of CC50 was 85,4 μg/mL. The value of SI of C. longa was 4.8. In vivo, we found that C. longa remarkable reduced of viral load after 24 hour. Histopathological examination showed no specific abnormalities in liver and kidney. There was no significant increase in levels of SGPT, SGOT, urea, and creatinine. From this study it can be concluded that C. longa could potentially be used as antiviral against DENV with low cytotoxicity and effective inhibition.
UR - http://www.scopus.com/inward/record.url?scp=85040715090&partnerID=8YFLogxK
U2 - 10.1088/1755-1315/101/1/012005
DO - 10.1088/1755-1315/101/1/012005
M3 - Conference article
AN - SCOPUS:85040715090
SN - 1755-1307
VL - 101
JO - IOP Conference Series: Earth and Environmental Science
JF - IOP Conference Series: Earth and Environmental Science
IS - 1
M1 - 012005
T2 - International Conference on Natural Products and Bioresource Science 2017, ICONPROBIOS 2017
Y2 - 23 October 2017 through 24 October 2017
ER -