TY - JOUR
T1 - Antenna coupled bolometer simulation for terahertz radiation detection diffracted by a small metal object
AU - Marbun, H. S.
AU - Apriono, C.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/2/27
Y1 - 2021/2/27
N2 - Terahertz (THz) wave technologies are becoming near future wireless technologies because of its advantages of considerable bandwidth and still unlicensed spectrum. Its small bandwidth offers a more compact wireless device on a scale of micrometers. Detection is a challenge for applying these potential technologies. An antenna coupled with a bolometer device is a candidate to capture emitted THz wave radiation. Another consideration can be any possible obstacles. This paper presents a simulation of Terahertz wave radiation detected with a dipole antenna connected to a bolometer. This research uses a 3D simulation software of CST Microwave Studio to simulate linearly THz plane waves radiation passing through a small metal object. Some dipole antennas coupled bolometer detect the power of the plane wave radiation in location after the emitted plane waves hit the object. The result shows that the highest detected power can be detected. Even the detector is located at the center of the area blocked by the metal object. This condition indicates that diffraction is high enough, affected by the comparable size, the metal, wavelength, and observation distances. More studies to characterize this diffraction effect are becoming useful, especially for THz imaging applications, such as metal detection for an airport security system.
AB - Terahertz (THz) wave technologies are becoming near future wireless technologies because of its advantages of considerable bandwidth and still unlicensed spectrum. Its small bandwidth offers a more compact wireless device on a scale of micrometers. Detection is a challenge for applying these potential technologies. An antenna coupled with a bolometer device is a candidate to capture emitted THz wave radiation. Another consideration can be any possible obstacles. This paper presents a simulation of Terahertz wave radiation detected with a dipole antenna connected to a bolometer. This research uses a 3D simulation software of CST Microwave Studio to simulate linearly THz plane waves radiation passing through a small metal object. Some dipole antennas coupled bolometer detect the power of the plane wave radiation in location after the emitted plane waves hit the object. The result shows that the highest detected power can be detected. Even the detector is located at the center of the area blocked by the metal object. This condition indicates that diffraction is high enough, affected by the comparable size, the metal, wavelength, and observation distances. More studies to characterize this diffraction effect are becoming useful, especially for THz imaging applications, such as metal detection for an airport security system.
UR - http://www.scopus.com/inward/record.url?scp=85102420991&partnerID=8YFLogxK
U2 - 10.1088/1755-1315/673/1/012035
DO - 10.1088/1755-1315/673/1/012035
M3 - Conference article
AN - SCOPUS:85102420991
SN - 1755-1307
VL - 673
JO - IOP Conference Series: Earth and Environmental Science
JF - IOP Conference Series: Earth and Environmental Science
IS - 1
M1 - 012035
T2 - 3rd International Conference on Smart City Innovation, ICSCI 2020
Y2 - 5 August 2020 through 6 August 2020
ER -