TY - JOUR
T1 - Analyzing protein-protein interactions of coronavirus using markov clustering with cuckoo search and ant lion optimization
AU - Afriyani, R.
AU - Bustamam, A.
AU - Sarwinda, D.
N1 - Funding Information:
This research has been supported by PUTI KI 2020 No. NKB-778/UN2.RST/HKP.05.00/2020 grant from DRPM Universitas Indonesia.
Publisher Copyright:
© 2021 Institute of Physics Publishing. All rights reserved.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/1/7
Y1 - 2021/1/7
N2 - Proteins are complex organic compounds made up of smaller units called amino acids that are bonded together in long chains. Protein interacts with other proteins or molecules and becomes essential in the structure, function, and regulation of organisms' cells. The Protein-Protein Interaction (PPI) results in a considerably large network. Consequently, there is a need to find a method to simplify the network for easy interpretation of the protein-protein interaction. One of the most common methods is Markov Clustering (MCL). MCL has been applied to solve graph clustering problems based on stochastic flow simulation. MCL has three main stages in the process, namely expansion, inflation, and pruning. Although MCL produces a fast and well-balanced non-hierarchical clustering, it has a limitation where the results depend on the inflation parameter being inputted manually. In this study, we develop a method to combine Markov Clustering (MCL) with Cuckoo Search (CS) and Ant Lion Optimization (ALO) Algorithm. CS and ALO are applied in MCL algorithm to obtain an optimized inflation parameter automatically. PPI network of SARS-CoV-2 and other related coronavirus datasets are used in this research and is presented in the form of a graph. The experiment shows that CS-MCL forms 47 clusters, while ALO-MCL yields 14 cluster on the PPI dataset.
AB - Proteins are complex organic compounds made up of smaller units called amino acids that are bonded together in long chains. Protein interacts with other proteins or molecules and becomes essential in the structure, function, and regulation of organisms' cells. The Protein-Protein Interaction (PPI) results in a considerably large network. Consequently, there is a need to find a method to simplify the network for easy interpretation of the protein-protein interaction. One of the most common methods is Markov Clustering (MCL). MCL has been applied to solve graph clustering problems based on stochastic flow simulation. MCL has three main stages in the process, namely expansion, inflation, and pruning. Although MCL produces a fast and well-balanced non-hierarchical clustering, it has a limitation where the results depend on the inflation parameter being inputted manually. In this study, we develop a method to combine Markov Clustering (MCL) with Cuckoo Search (CS) and Ant Lion Optimization (ALO) Algorithm. CS and ALO are applied in MCL algorithm to obtain an optimized inflation parameter automatically. PPI network of SARS-CoV-2 and other related coronavirus datasets are used in this research and is presented in the form of a graph. The experiment shows that CS-MCL forms 47 clusters, while ALO-MCL yields 14 cluster on the PPI dataset.
UR - http://www.scopus.com/inward/record.url?scp=85100812983&partnerID=8YFLogxK
U2 - 10.1088/1742-6596/1722/1/012009
DO - 10.1088/1742-6596/1722/1/012009
M3 - Conference article
AN - SCOPUS:85100812983
SN - 1742-6588
VL - 1722
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
IS - 1
M1 - 012009
T2 - 10th International Conference and Workshop on High Dimensional Data Analysis, ICW-HDDA 2020
Y2 - 12 October 2020 through 15 October 2020
ER -