TY - GEN
T1 - Analytical and experimental models of porosity formation of duralumin cast in vacuum casting system
AU - Suprapto, Wahyono
AU - Suharno, Bambang
AU - Soedarsono, Johny Wahyuadi
AU - Priadi, Dedi
PY - 2011
Y1 - 2011
N2 - Porosity in cast metals often leads to cracking of components due to stress concentration and leakage, and as the result, the castings need be repaired or rejected. Disharmony in casting process was resulting in porosity. Prediction of porosity in the casting is necessary as a step to avoid the waste products and reduce costs. But to ensure whether these predictions are accurate and precise, it is still necessary to validate the test trials and testing. This paper aims to provide early information when, where, and how large a defect occurs in particular foundry casting porosity on duralumin. The analytical study of porosity formation based analytic equilibrium wt% of element, the behavior of the thermodynamic, hydrodynamic, and rules of metallurgical on vacuum casting of duralumin. Experiments as a validation study are conducted by duralumin remelting on stainless steel bowl in a vacuum casting furnace. Analytical simulation and experiments of the casting that has been vacuumed by melting 10 cmHg pressures higher than the pressure solidification, and duralumin melt is poured automatically into permanent mold carbon steel. In the study cast duralumin created five different thicknesses. Both these studies assume the addition of copper (2.5%, 3.0%, 3.5 %, 4.0%, and 4.5% Cu) and vacuum pressure (76, 50, 40, cmHg), as independent variables, while dependent variable in the studies is porosity characteristics, which includes morphology, number and dimensions of the porosity. Optical emission spectrometry test, Reynold's and Niyama numbers, Sievert's law, Archimedes' principle (Pycnometry and Straube-Pfeiffer tests), and Eichenauer equation are instruments which are used to determine the characterization of duralumin casting porosity. Duralumin ingots remelting process was performed by the control pressure (p1) and temperature (T1). Vacuuming process performed after the smelting room temperature reaches 600 °C. Once melted, it followed by duralumin into a permanent mold (p2, T2). As a control parameter is the height of pouring (7 cm), pour temperature and mold temperature respectively at 750 °C and 300 °C. The porosity characteristics studies of two models produce two types of porosity (gas and shrinkage), the quantity dimension and porosity, and distribution of porosity in the cast duralumin.
AB - Porosity in cast metals often leads to cracking of components due to stress concentration and leakage, and as the result, the castings need be repaired or rejected. Disharmony in casting process was resulting in porosity. Prediction of porosity in the casting is necessary as a step to avoid the waste products and reduce costs. But to ensure whether these predictions are accurate and precise, it is still necessary to validate the test trials and testing. This paper aims to provide early information when, where, and how large a defect occurs in particular foundry casting porosity on duralumin. The analytical study of porosity formation based analytic equilibrium wt% of element, the behavior of the thermodynamic, hydrodynamic, and rules of metallurgical on vacuum casting of duralumin. Experiments as a validation study are conducted by duralumin remelting on stainless steel bowl in a vacuum casting furnace. Analytical simulation and experiments of the casting that has been vacuumed by melting 10 cmHg pressures higher than the pressure solidification, and duralumin melt is poured automatically into permanent mold carbon steel. In the study cast duralumin created five different thicknesses. Both these studies assume the addition of copper (2.5%, 3.0%, 3.5 %, 4.0%, and 4.5% Cu) and vacuum pressure (76, 50, 40, cmHg), as independent variables, while dependent variable in the studies is porosity characteristics, which includes morphology, number and dimensions of the porosity. Optical emission spectrometry test, Reynold's and Niyama numbers, Sievert's law, Archimedes' principle (Pycnometry and Straube-Pfeiffer tests), and Eichenauer equation are instruments which are used to determine the characterization of duralumin casting porosity. Duralumin ingots remelting process was performed by the control pressure (p1) and temperature (T1). Vacuuming process performed after the smelting room temperature reaches 600 °C. Once melted, it followed by duralumin into a permanent mold (p2, T2). As a control parameter is the height of pouring (7 cm), pour temperature and mold temperature respectively at 750 °C and 300 °C. The porosity characteristics studies of two models produce two types of porosity (gas and shrinkage), the quantity dimension and porosity, and distribution of porosity in the cast duralumin.
KW - Disharmony
KW - Duralumin
KW - Model
KW - Porosity
KW - Vacuuming
UR - http://www.scopus.com/inward/record.url?scp=79960385655&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/AMR.277.76
DO - 10.4028/www.scientific.net/AMR.277.76
M3 - Conference contribution
AN - SCOPUS:79960385655
SN - 9783037851791
T3 - Advanced Materials Research
SP - 76
EP - 83
BT - Advanced Materials Research QiR 12
T2 - 12th International Conference on Quality in Research, QiR 2011
Y2 - 4 July 2011 through 7 July 2011
ER -