TY - GEN
T1 - Analysis and reconstruction of noisy finger vein infrared optical images
AU - Aminoto, Toto
AU - Priambodo, Purnomo Sidi
AU - Sudibyo, Harry
N1 - Funding Information:
This research is funded by Research Grant “Hibah Publikasi Terindeks Internasional (PUTI) 2020 (NKB-1128/UN2.RST/HKP.05.00/2020)”, Universitas Indonesia.
Publisher Copyright:
© 2021 Author(s).
PY - 2021/3/23
Y1 - 2021/3/23
N2 - Biometric technology is required, along with technological advances in the digital world. In this digital age, authentication in digital transactions is necessary, especially for transaction security. We can utilize our unique body organs for the authentication process. One part of the human body that can be functioned for biometric is the finger vein. Finger vein can be used for biometric because every human living, finger vein pattern varies and unique for each person. Therefore, determine the physical characteristics of each person specifically. 780-980 nm near-infrared spectrum is effective for this application because of its portability and non-invasive trait. However, oftentimes, imaging results using infrared radiant contain noise. Notably, noise salt & pepper. This noise-reducing image information accuracy and making the extraction process more difficult, as a result, causing finger vein patterns difficult to recognize. To reduce the problem mentioned above, image noise must be reduced. One of the filters that can be used for reducing salt & pepper noise is the median filter. In the imaging transmitting mode, the intensity of infrared radiant absorbed into finger vein affecting imaging quality result. The bigger intensity, the bigger the transmittance radiance output unless saturation happens. As a result, the finger vein image becomes clearer. Moreover, attenuation intensity transmittance output value is influenced by wavelength. This process is simply according to Rayleigh scattering theory. Differentiation in wavelength, giving an effect in scattered intensity value, then affects attenuation intensity. Attenuation intensity produces different noises depends on the wavelength. This study suppresses the noise and analyzes the impact of wavelength variation on optical imaging process and noise level produced in 780-980 infrared spectrum span.
AB - Biometric technology is required, along with technological advances in the digital world. In this digital age, authentication in digital transactions is necessary, especially for transaction security. We can utilize our unique body organs for the authentication process. One part of the human body that can be functioned for biometric is the finger vein. Finger vein can be used for biometric because every human living, finger vein pattern varies and unique for each person. Therefore, determine the physical characteristics of each person specifically. 780-980 nm near-infrared spectrum is effective for this application because of its portability and non-invasive trait. However, oftentimes, imaging results using infrared radiant contain noise. Notably, noise salt & pepper. This noise-reducing image information accuracy and making the extraction process more difficult, as a result, causing finger vein patterns difficult to recognize. To reduce the problem mentioned above, image noise must be reduced. One of the filters that can be used for reducing salt & pepper noise is the median filter. In the imaging transmitting mode, the intensity of infrared radiant absorbed into finger vein affecting imaging quality result. The bigger intensity, the bigger the transmittance radiance output unless saturation happens. As a result, the finger vein image becomes clearer. Moreover, attenuation intensity transmittance output value is influenced by wavelength. This process is simply according to Rayleigh scattering theory. Differentiation in wavelength, giving an effect in scattered intensity value, then affects attenuation intensity. Attenuation intensity produces different noises depends on the wavelength. This study suppresses the noise and analyzes the impact of wavelength variation on optical imaging process and noise level produced in 780-980 infrared spectrum span.
KW - Median Filter
KW - MSE & PSNR
KW - Noise salt & pepper
KW - Optical Imaging
UR - http://www.scopus.com/inward/record.url?scp=85103484635&partnerID=8YFLogxK
U2 - 10.1063/5.0047816
DO - 10.1063/5.0047816
M3 - Conference contribution
AN - SCOPUS:85103484635
T3 - AIP Conference Proceedings
BT - 5th Biomedical Engineering''s Recent Progress in Biomaterials, Drugs Development, and Medical Devices
A2 - Lischer, Kenny
A2 - Supriadi, Sugeng
A2 - Rahman, Siti Fauziyah
A2 - Whulanza, Yudan
PB - American Institute of Physics Inc.
T2 - 5th International Symposium of Biomedical Engineering, ISBE 2020
Y2 - 28 July 2020 through 29 July 2020
ER -