An insight into potential phosphate bioremediation and renewable energy from agricultural waste via integrated wastewater treatment systems in Indonesia

Devi R. Asih, Windri Handayani, Alyssa Z. Ananda, Ratna Yuniati, Ryuichi Hirota, Tina C. Summerfield, Julian J. Eaton-Rye

Research output: Contribution to journalReview articlepeer-review

Abstract

Indonesia is renowned as an agricultural powerhouse, ranking first globally in oil palm production. This prominence in agriculture leads to the consistent generation of agro-industrial waste, notably Palm Oil Mill Effluent (POME). Effectively addressing these waste concerns is important due to their adverse impacts on aquatic ecosystems and the nation’s health and economy. Anthropogenic wastewater with excessive phosphorus content can trigger eutrophication and toxic algal blooms, posing environmental risks and potentially precipitating a future clean water crisis. Thus, a comprehensive approach is necessary to restore the environment and biogeochemical cycles. Treatment efforts involving bioremediation agents aim to recycle organic and inorganic pollutants in the environment. Photosynthetic organisms like plants and microalgae serve as effective bioremediation agents, capable of absorbing excess phosphorus. They can utilize phosphate as an energy source to boost biomass. Integrating these bioremediation agents with bioengineering technology optimizes the treatment efficacy while simultaneously producing valuable biomass for products and bioenergy. This review article explores photosynthetic organisms’ multifunctional role as phosphorus bioremediation agents for wastewater treatment, minimizing environmental pollutant impacts, and providing biomass for fertilizers, polymers, bioplastics, and renewable energy. Furthermore, this study unveils opportunities for future technological advancements in this field.

Original languageEnglish
Article number042001
JournalEnvironmental Research Communications
Volume6
Issue number4
DOIs
Publication statusPublished - 1 Apr 2024

Keywords

  • agricultural waste
  • phosphate remediation
  • photosynthetic microorganisms
  • phytoremediation
  • renewable energy

Fingerprint

Dive into the research topics of 'An insight into potential phosphate bioremediation and renewable energy from agricultural waste via integrated wastewater treatment systems in Indonesia'. Together they form a unique fingerprint.

Cite this