Ag/Fe3O4/CuO/ZnO incorporated NGP materials: Visible light driven photocatalysts for the degradation of water pollutants

H. Tju, R. Saleh

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Ag/Fe3O4/CuO/ZnO/nanographene platelets (NGP) composites with different NGP loadings were synthesized in the present study using a simple hydrothermal method. The photocatalytic activities of the prepared Ag/ Fe3O4/CuO/ZnO/NGP composites were then studied for their ability to degrade different kinds of dyes in aqueous solutions under visible light irradiation. The X-ray diffraction (XRD) results indicate a face-centered cubic structure for Ag, a cubical spinel structure for Fe3O4, a monoclinic structure for CuO, and a hexagonal wurtzite structure for ZnO. Furthermore, a graphite-like structure could be detected for NGP. The thermal stability of the samples was evaluated by TGA; the results further confirm the good agreement between the actual and theoretical (5, 10, and 15 wt.%) weight loadings of NGP in the samples. Ultraviolet-visible (UV-Vis) absorbance spectroscopy was used to analyze the optical properties of the prepared samples; a surface plasmon resonance (SPR) phenomenon could be detected around ~ 440 nm and after the addition of NGP, the absorption band shifted to the visible light region. The ternary Ag/ Fe3O4/CuO/ZnO/NGP composites exhibit a significantly enhanced photocatalytic activity than either Ag/ Fe3O4/CuO/ZnO or Fe3O4/CuO/ZnO in degrading a methylene blue (MB) dye in an aqueous solution. When the NGP loading was 10 wt.%, the composites displayed the highest photocatalytic activity. The Ag/ Fe3O4/CuO/ZnO/NGP could efficiently degrade a variety of organic dyes, such as MB, Congo red (CR), and methyl orange (MO) under visible light irradiation. The species active in the degradation process were found to be the holes. More importantly, Ag/ Fe3O4/CuO/ZnO/NGP composites demonstrated good stability and reusability in repetitive photocatalytic activity processes.

Original languageEnglish
Title of host publicationProceedings of the 3rd International Symposium on Current Progress in Mathematics and Sciences 2017, ISCPMS 2017
EditorsRatna Yuniati, Terry Mart, Ivandini T. Anggraningrum, Djoko Triyono, Kiki A. Sugeng
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735417410
DOIs
Publication statusPublished - 22 Oct 2018
Event3rd International Symposium on Current Progress in Mathematics and Sciences 2017, ISCPMS 2017 - Bali, Indonesia
Duration: 26 Jul 201727 Jul 2017

Publication series

NameAIP Conference Proceedings
Volume2023
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference3rd International Symposium on Current Progress in Mathematics and Sciences 2017, ISCPMS 2017
Country/TerritoryIndonesia
CityBali
Period26/07/1727/07/17

Keywords

  • Ag/FeO
  • NGP
  • ZnO
  • visible photocatalysis

Fingerprint

Dive into the research topics of 'Ag/Fe3O4/CuO/ZnO incorporated NGP materials: Visible light driven photocatalysts for the degradation of water pollutants'. Together they form a unique fingerprint.

Cite this