TY - JOUR
T1 - A STUDY OF CERIUM EXTRACTION FROM BANGKA TIN SLAG USING HYDROCHLORIC ACID
AU - Trinopiawan, Kurnia
AU - Mubarok, Zaki
AU - Widana, Kurnia Setiawan
AU - Ani, Budi Yuli
AU - Susilo, Yarianto Sugeng Budi
AU - Prassanti, Riesna
AU - Susanto, Iwan
AU - Permana, Sulaksana
AU - Soedarsono, Johny W.
N1 - Funding Information:
The authors are grateful to the Center for Nuclear Minerals Technology of Indonesian National Nuclear Energy Agency (BATAN) and the Ministry of Research, Technology, and Higher Education that made this work possible. The authors also thank researchers and analysts at BATAN: Widodo for his support with optical microscopes, Ganisa Kurniati Suryaman for her support with XRD, Guswita Alwi and Sumiarti for their support with ICP-OES, and Ersina Rakhma for her support with XRF.
Publisher Copyright:
© 2020
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020
Y1 - 2020
N2 - Bangka Tin Slag (BTS) was a tin-smelting waste containing high silica and other elements that have high economic value, including cerium, which is a rare earth element. Silica and Ce2O3 contents in BTS were 32.86 % and 1.35 % respectively. Other elements that have high concentrations in BTS include 15.46 % of CaO, 10.88 % of Al2O3, and 9.20% of Fe2O3. The objective of this study was to determine the optimum conditions for cerium extraction using HCl, which includes HCl concentration, temperature, particle size, stirring speed, and dissolution time. In addition, the effect of these parameters on Ce extraction was also studied. The one-factor-at-time method was used to determine the optimum conditions. Pretreatment of BTS with the alkaline fusion method and water leaching was done to reduce both the silica content and increasing its porosity. Alkaline fusion carried out at 700 ℃ using NaOH converts the silica into water-soluble sodium silicate. Characterization of the slag structure before and after the pretreatment process was completely carried out by using X-ray diffraction (XRD), X-ray fluorescence (XRF), Scanning electron microscope (SEM), and optical microscope. Furthermore, measurement of Ce content in the filtrate of the dissolution process was performed with inductively coupled plasma – optical emission spectrometry (ICP-OES). The results showed that the optimum of 75.16 % Ce was extracted by using some parameter conditions, namely by 2.5 M of HCl concentration, at the temperature of 40 ℃, with the particle size of –325 mesh, stirring speed of 150 rpm, and dissolution time of 180 minutes. Each parameter gives a significant effect on Ce extraction, wherein the initial stage, the increase in the value of each parameter gives an increase in Ce extraction and begins to decrease when equilibrium occurs
AB - Bangka Tin Slag (BTS) was a tin-smelting waste containing high silica and other elements that have high economic value, including cerium, which is a rare earth element. Silica and Ce2O3 contents in BTS were 32.86 % and 1.35 % respectively. Other elements that have high concentrations in BTS include 15.46 % of CaO, 10.88 % of Al2O3, and 9.20% of Fe2O3. The objective of this study was to determine the optimum conditions for cerium extraction using HCl, which includes HCl concentration, temperature, particle size, stirring speed, and dissolution time. In addition, the effect of these parameters on Ce extraction was also studied. The one-factor-at-time method was used to determine the optimum conditions. Pretreatment of BTS with the alkaline fusion method and water leaching was done to reduce both the silica content and increasing its porosity. Alkaline fusion carried out at 700 ℃ using NaOH converts the silica into water-soluble sodium silicate. Characterization of the slag structure before and after the pretreatment process was completely carried out by using X-ray diffraction (XRD), X-ray fluorescence (XRF), Scanning electron microscope (SEM), and optical microscope. Furthermore, measurement of Ce content in the filtrate of the dissolution process was performed with inductively coupled plasma – optical emission spectrometry (ICP-OES). The results showed that the optimum of 75.16 % Ce was extracted by using some parameter conditions, namely by 2.5 M of HCl concentration, at the temperature of 40 ℃, with the particle size of –325 mesh, stirring speed of 150 rpm, and dissolution time of 180 minutes. Each parameter gives a significant effect on Ce extraction, wherein the initial stage, the increase in the value of each parameter gives an increase in Ce extraction and begins to decrease when equilibrium occurs
KW - alkaline fusion
KW - Bangka tin slag
KW - cerium
KW - HCl
KW - optimum conditions
KW - water leaching
UR - http://www.scopus.com/inward/record.url?scp=85096453379&partnerID=8YFLogxK
U2 - 10.15587/1729-4061.2020.210530
DO - 10.15587/1729-4061.2020.210530
M3 - Article
AN - SCOPUS:85096453379
SN - 1729-3774
VL - 4
SP - 24
EP - 30
JO - Eastern-European Journal of Enterprise Technologies
JF - Eastern-European Journal of Enterprise Technologies
IS - 4-106
ER -